A new computational framework for log-concave density estimation
暂无分享,去创建一个
[1] J. Wellner,et al. Bounding distributional errors via density ratios , 2019, Bernoulli.
[2] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[3] Fabian Rathke,et al. Fast multivariate log-concave density estimation , 2018, Comput. Stat. Data Anal..
[4] Panos M. Pardalos,et al. Convex optimization theory , 2010, Optim. Methods Softw..
[5] Yurii Nesterov,et al. Primal-dual subgradient methods for convex problems , 2005, Math. Program..
[6] Franz Kappel,et al. An Implementation of Shor's r-Algorithm , 2000, Comput. Optim. Appl..
[7] R. Koenker,et al. QUASI-CONCAVE DENSITY ESTIMATION , 2010, 1007.4013.
[8] Qiyang Han,et al. APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES. , 2015, Annals of statistics.
[9] M. Cule,et al. Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density , 2009, 0908.4400.
[10] Sabyasachi Chatterjee,et al. Isotonic regression in general dimensions , 2017, The Annals of Statistics.
[11] R. Barber,et al. Local continuity of log-concave projection, with applications to estimation under model misspecification , 2020, 2002.06117.
[12] M. Yuan,et al. Independent component analysis via nonparametric maximum likelihood estimation , 2012, 1206.0457.
[13] L. Duembgen,et al. Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency , 2007, 0709.0334.
[14] Adityanand Guntuboyina,et al. On risk bounds in isotonic and other shape restricted regression problems , 2013, 1311.3765.
[15] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[16] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[17] Lutz Duembgen,et al. On an Auxiliary Function for Log-Density Estimation , 2008, 0807.4719.
[18] R. Samworth,et al. Isotonic regression with unknown permutations: Statistics, computation, and adaptation , 2020, The Annals of Statistics.
[19] C. Hildreth. Point Estimates of Ordinates of Concave Functions , 1954 .
[20] T. Cai,et al. A Framework For Estimation of Convex Functions , 2015 .
[21] V. Buldygin,et al. Metric characterization of random variables and random processes , 2000 .
[22] Rina Foygel Barber,et al. Contraction and uniform convergence of isotonic regression , 2017, Electronic Journal of Statistics.
[23] L. Dümbgen,et al. logcondens: Computations Related to Univariate Log-Concave Density Estimation , 2011 .
[24] Arlene K. H. Kim,et al. Adaptation in log-concave density estimation , 2016, The Annals of Statistics.
[25] Arlene K. H. Kim,et al. Adaptation in multivariate log-concave density estimation , 2018, The Annals of Statistics.
[26] Y. Nesterov. Primal-Dual Subgradient Methods for Convex Problems , 2005 .
[27] Arlene K. H. Kim,et al. Global rates of convergence in log-concave density estimation , 2014, 1404.2298.
[28] G. Walther. Detecting the Presence of Mixing with Multiscale Maximum Likelihood , 2002 .
[29] W. Gilks,et al. Adaptive rejection sampling from log-concave density functions , 1993 .
[30] Jeremy Kepner,et al. Interactive Supercomputing on 40,000 Cores for Machine Learning and Data Analysis , 2018, 2018 IEEE High Performance extreme Computing Conference (HPEC).
[31] Geurt Jongbloed,et al. Nonparametric Estimation under Shape Constraints , 2014 .
[32] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[33] Franziska Wulf,et al. Minimization Methods For Non Differentiable Functions , 2016 .
[34] Ilias Diakonikolas,et al. Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities , 2018, COLT.
[35] Cun-Hui Zhang. Risk bounds in isotonic regression , 2002 .
[36] G. Walther. Inference and Modeling with Log-concave Distributions , 2009, 1010.0305.
[37] N. Shor. Nondifferentiable Optimization and Polynomial Problems , 1998 .
[38] Martin J. Wainwright,et al. Randomized Smoothing for Stochastic Optimization , 2011, SIAM J. Optim..
[39] Adityanand Guntuboyina,et al. Global risk bounds and adaptation in univariate convex regression , 2013, 1305.1648.
[40] J. Wellner,et al. ST ] 2 5 Ja n 20 16 MULTIVARIATE CONVEX REGRESSION : GLOBAL RISK BOUNDS AND ADAPTATION By Qiyang Han , 2016 .
[41] Charles R. Doss,et al. GLOBAL RATES OF CONVERGENCE OF THE MLES OF LOG-CONCAVE AND s-CONCAVE DENSITIES. , 2013, Annals of statistics.
[42] A. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log‐concave densities , 2014, 1412.7392.
[43] Nicholas G. Polson,et al. Sampling from log-concave distributions , 1994 .
[44] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[45] R. Samworth. Recent Progress in Log-Concave Density Estimation , 2017, Statistical Science.
[46] E. Seijo,et al. Nonparametric Least Squares Estimation of a Multivariate Convex Regression Function , 2010, 1003.4765.
[47] L. Duembgen,et al. APPROXIMATION BY LOG-CONCAVE DISTRIBUTIONS, WITH APPLICATIONS TO REGRESSION , 2010, 1002.3448.
[48] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[49] Kazuoki Azuma. WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .
[50] Robert B. Gramacy,et al. Maximum likelihood estimation of a multivariate log-concave density , 2010 .
[51] Ilias Diakonikolas,et al. A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families , 2019, NeurIPS.
[52] D. Rudolf,et al. Hit-and-Run for Numerical Integration , 2012, 1212.4486.
[53] W. Chan,et al. Unimodality, convexity, and applications , 1989 .
[54] Daniela Pucci de Farias,et al. Decentralized Resource Allocation in Dynamic Networks of Agents , 2008, SIAM J. Optim..
[55] Yong Wang,et al. A fast algorithm for univariate log‐concave density estimation , 2018, Australian & New Zealand Journal of Statistics.
[56] S. Geer,et al. Multivariate log-concave distributions as a nearly parametric model , 2008, Am. Math. Mon..
[57] Bodhisattva Sen,et al. Editorial: Special Issue on “Nonparametric Inference Under Shape Constraints” , 2018, Statistical Science.
[58] Yuval Dagan,et al. The Log-Concave Maximum Likelihood Estimator is Optimal in High Dimensions , 2019, ArXiv.
[59] Jon A Wellner,et al. NONPARAMETRIC ESTIMATION OF MULTIVARIATE CONVEX-TRANSFORMED DENSITIES. , 2009, Annals of statistics.
[60] R. Samworth,et al. High-dimensional nonparametric density estimation via symmetry and shape constraints , 2019, The Annals of Statistics.
[61] H. D. Brunk,et al. Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .
[62] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[63] Hendrik P. Lopuhaä,et al. Limit Theory in Monotone Function Estimation , 2018, Statistical Science.
[64] Qiyang Han,et al. Global empirical risk minimizers with "shape constraints" are rate optimal in general dimensions , 2019, 1905.12823.
[65] Adityanand Guntuboyina,et al. On the risk of convex-constrained least squares estimators under misspecification , 2017, Bernoulli.
[66] M. Cule,et al. Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.
[67] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[68] Jayanta Kumar Pal,et al. Estimating a Polya Frequency Function , 2006 .
[69] Santosh S. Vempala,et al. Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[70] R. Samworth,et al. Generalized additive and index models with shape constraints , 2014, 1404.2957.
[71] Angelia Nedic,et al. On stochastic gradient and subgradient methods with adaptive steplength sequences , 2011, Autom..
[72] H. M. Möller,et al. Invariant Integration Formulas for the n-Simplex by Combinatorial Methods , 1978 .
[73] Lin Xiao,et al. Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization , 2009, J. Mach. Learn. Res..
[74] Martin J. Wainwright,et al. Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization , 2010, IEEE Transactions on Information Theory.
[75] R. Samworth,et al. Smoothed log-concave maximum likelihood estimation with applications , 2011, 1102.1191.
[76] P. Bellec. Sharp oracle inequalities for Least Squares estimators in shape restricted regression , 2015, 1510.08029.
[77] Achim Klenke,et al. Probability theory - a comprehensive course , 2008, Universitext.
[78] U. Grenander. On the theory of mortality measurement , 1956 .