Dimensionality engineering of hybrid halide perovskite light absorbers

[1]  M. Nazeeruddin,et al.  All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells , 2018, Nano Energy.

[2]  Yang Yang,et al.  2D perovskite stabilized phase-pure formamidinium perovskite solar cells , 2018, Nature Communications.

[3]  Hongzheng Chen,et al.  Orientation Regulation of Phenylethylammonium Cation Based 2D Perovskite Solar Cell with Efficiency Higher Than 11% , 2018 .

[4]  Detlef-Matthias Smilgies,et al.  Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance , 2018, Nature Communications.

[5]  Oleksandr Voznyy,et al.  Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics. , 2018, Journal of the American Chemical Society.

[6]  Jinsong Huang,et al.  Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. , 2018, The journal of physical chemistry letters.

[7]  P. Gao,et al.  Lead‐Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too? , 2017, Advanced science.

[8]  M. Nazeeruddin,et al.  Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications , 2017, Coordination Chemistry Reviews.

[9]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[10]  Aram Amassian,et al.  Stable high efficiency two-dimensional perovskite solar cells via cesium doping , 2017 .

[11]  N. Park,et al.  Stabilizing the Ag Electrode and Reducing J-V Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[12]  Yanrong Wang,et al.  CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. , 2017, Journal of the American Chemical Society.

[13]  He Lin,et al.  Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p‐i‐n Photovoltaics , 2017 .

[14]  Yongzhen Wu,et al.  Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells , 2017 .

[15]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[16]  M. Green,et al.  The Effect of Stoichiometry on the Stability of Inorganic Cesium Lead Mixed-Halide Perovskites Solar Cells , 2017 .

[17]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[18]  B. Liu,et al.  Optical Properties and Modeling of 2D Perovskite Solar Cells , 2017 .

[19]  Hongzheng Chen,et al.  Vertically Oriented 2D Layered Perovskite Solar Cells with Enhanced Efficiency and Good Stability. , 2017, Small.

[20]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[21]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[22]  U. Bach,et al.  Diammonium and Monoammonium Mixed‐Organic‐Cation Perovskites for High Performance Solar Cells with Improved Stability , 2017 .

[23]  Wei Zhang,et al.  Tailoring Organic Cation of 2D Air‐Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells , 2017 .

[24]  Bai‐Xue Chen,et al.  A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell. , 2017, Chemical communications.

[25]  Y. Takeoka,et al.  Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers. , 2017, Chemical communications.

[26]  Hanxing Liu,et al.  2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells , 2017 .

[27]  Thomas M. Brown,et al.  Advances in hole transport materials engineering for stable and efficient perovskite solar cells , 2017 .

[28]  Xiujian Zhao,et al.  Improved air stability of perovskite hybrid solar cells via blending poly(dimethylsiloxane)–urea copolymers , 2017 .

[29]  M. Kanatzidis,et al.  High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16 , 2017 .

[30]  Wanjung Kim,et al.  Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. , 2017, Nano letters.

[31]  L. Etgar,et al.  High Efficiency and High Open Circuit Voltage in Quasi 2D Perovskite Based Solar Cells , 2017 .

[32]  Bai‐Xue Chen,et al.  Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells , 2017 .

[33]  Liduo Wang,et al.  Mixed Cation FAxPEA1–xPbI3 with Enhanced Phase and Ambient Stability toward High‐Performance Perovskite Solar Cells , 2017 .

[34]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[35]  Yaming Yu,et al.  Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric Detection of Pb2+ Ions in Rainwater Polluted by Leaking Perovskite Solar Cells. , 2016, Analytical chemistry.

[36]  Wei Geng,et al.  Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High‐Efficiency and Air‐Stable Photovoltaic Cells , 2016, Advanced materials.

[37]  M. Képénekian,et al.  Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. , 2016, ACS nano.

[38]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[39]  J. M. Gardner,et al.  Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells , 2016 .

[40]  M. Grätzel,et al.  An efficient perovskite solar cell with symmetrical Zn(ii) phthalocyanine infiltrated buffering porous Al2O3 as the hybrid interfacial hole-transporting layer. , 2016, Physical chemistry chemical physics : PCCP.

[41]  A. Jen,et al.  Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices , 2016 .

[42]  I. Moudrakovski,et al.  Toward Fluorinated Spacers for MAPI-Derived Hybrid Perovskites: Synthesis, Characterization, and Phase Transitions of (FC2H4NH3)2PbCl4 , 2016 .

[43]  Seigo Ito,et al.  Research Update: Overview of progress about efficiency and stability on perovskite solar cells , 2016 .

[44]  Henry J. Snaith,et al.  Research Update: Strategies for improving the stability of perovskite solar cells , 2016 .

[45]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[46]  F. Giustino,et al.  Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids , 2016 .

[47]  W. Jaegermann,et al.  Hybrid Perovskite/Perovskite Heterojunction Solar Cells. , 2016, ACS nano.

[48]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[49]  S. Mhaisalkar,et al.  Nanostructuring Mixed‐Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics , 2016, Advanced materials.

[50]  Xiaofeng Wang,et al.  Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell , 2016 .

[51]  D. J. Clark,et al.  Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors , 2016 .

[52]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[53]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[54]  Peng Gao,et al.  High‐Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile‐Modified CH3NH3PbI3 , 2016, Advanced materials.

[55]  Aram Amassian,et al.  Ligand-Stabilized Reduced-Dimensionality Perovskites. , 2016, Journal of the American Chemical Society.

[56]  Yang Yang,et al.  Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. , 2016, Nano letters.

[57]  K. Loh,et al.  Graphene and Graphene-like Molecules: Prospects in Solar Cells. , 2016, Journal of the American Chemical Society.

[58]  Jinsong Huang,et al.  Electric‐Field‐Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures , 2016 .

[59]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[60]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[61]  Fan Li,et al.  A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite , 2015 .

[62]  Fan Li,et al.  Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells. , 2015, Chemical communications.

[63]  Peng Gao,et al.  Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells , 2015 .

[64]  Yu Tong,et al.  Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. , 2015, Nano letters.

[65]  J. Pérez‐Prieto,et al.  Organometal Halide Perovskites: Bulk Low‐Dimension Materials and Nanoparticles , 2015 .

[66]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[67]  Huichang Xu,et al.  Comment on “Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries” by Po-Yen Chen, Jifa Qi, Matthew T. Klug, Xiangnan Dang, Paula T. Hammond and Angela M. Belcher, Energy Environ. Sci., 2014 , 2015 .

[68]  J. M. Gardner,et al.  Structure and function relationships in alkylammonium lead(II) iodide solar cells , 2015 .

[69]  M. Grätzel,et al.  Thermal Behavior of Methylammonium Lead- trihalide Perovskite Photovoltaic Light Harvesters , 2014 .

[70]  A. Belcher,et al.  Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries , 2014 .

[71]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[72]  Adam Jaffe,et al.  Intrinsic white-light emission from layered hybrid perovskites. , 2014, Journal of the American Chemical Society.

[73]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[74]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[75]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[76]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[77]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[78]  R. Nigon,et al.  Two-fold odd-even effect in self-assembled nanowires from oligopeptide-polymer-substituted perylene bisimides. , 2014, Journal of the American Chemical Society.

[79]  H. Butt,et al.  Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells. , 2014, Nanoscale.

[80]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[81]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[82]  Jun Lin,et al.  Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering , 2010 .

[83]  Cuikun Lin,et al.  Synthesis, structure and optical properties of different dimensional organic-inorganic perovskites , 2007 .

[84]  N. Louvain,et al.  Reduced Band Gap Hybrid Perovskites Resulting from Combined Hydrogen and Halogen Bonding at the Organic−Inorganic Interface , 2007 .

[85]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[86]  Takashi Kondo,et al.  Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals , 2003 .

[87]  D. Mitzi,et al.  Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions. , 2002, Inorganic chemistry.

[88]  M. Era,et al.  PbBr-Based Layered Perovskite Organic-Inorganic Superlattice with Photochromic Chromophore-Linked Ammonium Molecules as an Organic Layer , 2001 .

[89]  David B. Mitzi,et al.  Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers , 1999 .

[90]  M. Kanatzidis,et al.  Incorporation of A2Q into HgQ and Dimensional Reduction to A2Hg3Q4 and A2Hg6Q7 (A = K, Rb, Cs; Q = S, Se). Access of Li Ions in A2Hg6Q7 through Topotactic Ion-Exchange , 1998 .

[91]  M. Kanatzidis,et al.  Dimensional reduction in II-VI materials: A2Cd3Q4 (A = K, Q = S, Se, Te; A = Rb, Q = S, Se), novel ternary low-dimensional cadmium chalcogenides produced by incorporation of A2Q in CdQ , 1996 .

[92]  Tetsuo Tsutsui,et al.  Electroluminescent device using two dimensional semiconductor (C6H5C2H4NH3)2PpI4 as an emitter , 1995 .

[93]  O. Yamamuro,et al.  p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals , 1992 .

[94]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[95]  Ishihara,et al.  Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. , 1990, Physical review. B, Condensed matter.

[96]  H. Miyamae,et al.  Crystal structures of compounds obtained from lead(II) iodide-hexamethylenetetramine system, [C6H13N4]2[Pb3I8(C6H12N4)2] and [C6H13N4][PbI3]. , 1988 .

[97]  H. Miyamae Structural Variety in Lead (II) Iodide-Lewis Base Adducts and the Role of the Inert Pair Electrons of the Lead (II) Atom , 1986 .

[98]  W. Maier,et al.  Triiodolead(II) complexes. structure and Raman spectra , 1983 .

[99]  F. Galasso CHAPTER 11 – OTHER PEROVSKITE-TYPE COMPOUNDS , 1969 .