Optimal Selection of Time-Frequency Representations for Signal Classification: a Kernel-Target Alignment Approach
暂无分享,去创建一个
[1] N. Cristianini,et al. On Kernel-Target Alignment , 2001, NIPS.
[2] Paulo Gonçalves,et al. Adaptive diffusion as a versatile tool for time-frequency and time-scale representations processing: a review , 2005, IEEE Transactions on Signal Processing.
[3] C. Richard,et al. Kernel machines : une nouvelle méthode pour l'optimisation de l'alignement des noyaux et l'amélioration des performances , 2005 .
[4] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[5] Jasha Droppo,et al. Optimizing time-frequency distributions for automatic classification , 1997, Optics & Photonics.
[6] Bernhard Schölkopf,et al. A Generalized Representer Theorem , 2001, COLT/EuroCOLT.
[7] Edward Y. Chang,et al. Formulating distance functions via the kernel trick , 2005, KDD '05.
[8] Patrick Flandrin,et al. Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..
[9] Nello Cristianini,et al. On the Extensions of Kernel Alignment , 2002 .
[10] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[11] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[12] C. Richard,et al. Reconnaissance des formes par méthodes à noyau dans le domaine temps-fréquence , 2005 .
[13] Douglas L. Jones,et al. An adaptive optimal-kernel time-frequency representation , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[14] P.J.W. Rayner,et al. Optimized support vector machines for nonstationary signal classification , 2002, IEEE Signal Processing Letters.
[15] N. Cristianini,et al. Optimizing Kernel Alignment over Combinations of Kernel , 2002 .
[16] C. Doncarli,et al. Improved optimization of time-frequency-based signal classifiers , 2001, IEEE Signal Processing Letters.