A Bivariate Generalization of the Noncentral Negative Binomial Distribution

This article proposes a bivariate generalization of the noncentral negative binomial distribution which arises as a model in photon and neural counting. This bivariate generalization is derived as a mixed shifted bivariate negative binomial distribution. Various properties and parameter estimation, especially by a minimum distance method based on the probability generating function, are considered. To show the practical usefulness of the bivariate distribution proposed, an application to model low-flux astronomical images is discussed and a real data set has been analyzed.

[1]  Ramesh C. Gupta,et al.  A new generalization of the negative binomial distribution , 2004, Comput. Stat. Data Anal..

[2]  Seng-Huat Ong,et al.  The non-central negative binomial distribution , 1979 .

[3]  Jean-Yves Tourneret,et al.  Multivariate mixed poisson distributions , 2004, 2004 12th European Signal Processing Conference.

[4]  Jean-Yves Tourneret,et al.  Pairwise likelihood estimation for multivariate mixed Poisson models generated by Gamma intensities , 2009, Stat. Comput..

[5]  D. Karlis,et al.  Mixed Poisson Distributions , 2005 .

[6]  Seng-Huat Ong,et al.  Computation of probabilities of a generalized log-series and related distributions , 1995 .

[7]  J. Dickey Multiple Hypergeometric Functions: Probabilistic Interpretations and Statistical Uses , 1983 .

[8]  S. Kocherlakota,et al.  Bivariate discrete distributions , 1992 .

[9]  Seow Eng Ong,et al.  Some notes on the non-central negative binomial distribution , 1987 .

[10]  Seng-Huat Ong,et al.  Analysis of Long-Tailed Count Data by Poisson Mixtures , 2005 .

[11]  L. Lyusternik,et al.  New Work in the Probabilistic Theory of Special Functions , 1978 .

[12]  C. D. Kemp,et al.  On the Chi‐Square Goodness‐Of‐Fit Statistic for Bivariate Discrete Distributions , 1986 .

[13]  H. Papageorgiou,et al.  On compounded bivariate poisson distributions , 1994 .

[14]  P Holgate,et al.  Bivariate generalizations of Neyman's type A distribution. , 1966, Biometrika.

[15]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[16]  Hari M. Srivastava,et al.  Probabilistic derivation of some generating functions for the Laguerre polynomials , 1999 .

[17]  Seng-Huat Ong,et al.  Probabilistic proof of a Hankel transform of Laguerre polynomials , 1999 .

[18]  Seng-Huat Ong,et al.  The computer generation of bivariate binomial variables with given marginals and correlation , 1992 .

[19]  Jean-Yves Tourneret,et al.  Parameter Estimation for Multivariate Mixed Poisson Distributions , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[20]  O. Vorobyev,et al.  Discrete multivariate distributions , 2008, 0811.0406.

[21]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[22]  J. Gurland,et al.  A Class of Distributions Applicable to Accidents , 1961 .

[23]  Seng-Huat Ong,et al.  Bivariate non-central negative binomial distribution: Another generalisation , 1986 .

[24]  Seng-Huat Ong,et al.  A class of discrete distributions suited to fitting very long-tailed data , 1995 .

[25]  Sim Heng Ong,et al.  Parameter Estimation for Discrete Distributions by Generalized Hellinger-Type Divergence Based on Probability Generating Function , 2010, Commun. Stat. Simul. Comput..

[26]  A. M. Adelstein,et al.  Accident Proneness - A Criticism of the Concept Based Upon An Analysis of Shunters' Accidents , 1952 .

[27]  Roelof Koekoek,et al.  Generalizations of Laguerre polynomials , 1990 .

[28]  Seng-Huat Ong,et al.  On a generalized non-central negative binomial distribution , 1986 .

[29]  O. Barndorff-Nielsen Identifiability of mixtures of exponential families , 1965 .

[30]  Seng-Huat Ong,et al.  The bivariate non-central negative binomial distributions , 1986 .