Determination of the plastic viscosity of superplasticized cement pastes through capillary viscometers

[1]  Freek Bos,et al.  Opportunities and challenges for structural engineering of digitally fabricated concrete , 2020, Cement and Concrete Research.

[2]  L. Ferrara,et al.  Onset and intensity of shear thickening in cementitious suspensions – A parametrical study , 2020, Construction and Building Materials.

[3]  V. Mechtcherine,et al.  Experimental Insights into Concrete Flow-Regimes Subject to Shear-Induced Particle Migration (SIPM) during Pumping , 2020, Materials.

[4]  Viktor Mechtcherine,et al.  Assessment and prediction of concrete flow and pumping pressure in pipeline , 2020 .

[5]  Zhaochuan Li,et al.  Rheological analysis of Newtonian and non‐Newtonian fluids using Marsh funnel: Experimental study and computational fluid dynamics modeling , 2020, Energy Science & Engineering.

[6]  Q. Yuan,et al.  Time-dependent rheological behavior of cementitious paste under continuous shear mixing , 2019, Construction and Building Materials.

[7]  Kang Su Kim,et al.  Rheological Property Criteria for Buildable 3D Printing Concrete , 2019, Materials.

[8]  Héctor Cifuentes,et al.  Proportioning of self-compacting steel-fiber reinforced concrete mixes based on target plastic viscosity and compressive strength: Mix-design procedure & experimental validation , 2018, Construction and Building Materials.

[9]  Nicolas Roussel,et al.  Rheological requirements for printable concretes , 2018, Cement and Concrete Research.

[10]  Ammar Yahia,et al.  Measuring Rheological Properties of Cement Pastes: Most common Techniques, Procedures and Challenges , 2017 .

[11]  A. Sedaghat A novel and robust model for determining rheological properties of Newtonian and non-Newtonian fluids in a marsh funnel , 2017 .

[12]  Mohamed S. Gaith,et al.  Mathematical Modelling of the Flow Rate in a Marsh Funnel , 2016 .

[13]  S. Kulasegaram,et al.  Proportioning of self–compacting concrete mixes based on target plastic viscosity and compressive strength: Part I - mix design procedure , 2016 .

[14]  N. Jasim,et al.  Apparent Viscosity Direct from Marsh Funnel Test , 2014, Iraqi Journal of Chemical and Petroleum Engineering.

[15]  Roland Pusch,et al.  Rheological Properties of Cement-Based Grouts Determined by Different Techniques , 2014 .

[16]  A. Yahia Effect of solid concentration and shear rate on shear-thickening response of high-performance cement suspensions , 2014 .

[17]  M. Alonso,et al.  Viscosity and water demand of limestone- and fly ash-blended cement pastes in the presence of superplasticisers , 2013 .

[18]  Rajesh Kumar,et al.  Rheological analysis of drilling fluid using Marsh Funnel , 2013 .

[19]  Liberato Ferrara,et al.  On the identification of rheological properties of cement suspensions: Rheometry, Computational Fluid Dynamics modeling and field test measurements , 2012 .

[20]  Larry W. Lake,et al.  Rheological and yield stress measurements of non-Newtonian fluids using a Marsh Funnel , 2011 .

[21]  A. Yahia Shear-thickening behavior of high-performance cement grouts — Influencing mix-design parameters , 2011 .

[22]  Sébastien Remond,et al.  Influence of cement grouts composition on the rheological behaviour , 2011 .

[23]  U. Perego,et al.  Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach , 2010 .

[24]  Geert De Schutter,et al.  Why is fresh self-compacting concrete shear thickening? , 2009 .

[25]  P. Jézéquel,et al.  Reducing shear thickening of cement-based suspensions , 2009 .

[26]  R. Gettu,et al.  Experimental study of the flow behaviour of superplasticized cement paste , 2008 .

[27]  Á. G. Torre,et al.  Effect of polycarboxylate admixture structure on cement paste rheology , 2007 .

[28]  J. P. Bigas,et al.  Flow of Herschel–Bulkley fluids through the Marsh cone , 2006 .

[29]  Nicolas Roussel,et al.  A thixotropy model for fresh fluid concretes: Theory, validation and applications , 2006 .

[30]  R. Le Roy,et al.  Rheological behaviour of fresh cement pastes formulated from a Self Compacting Concrete (SCC) , 2006 .

[31]  Steven J Shire,et al.  Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. , 2005, Journal of pharmaceutical sciences.

[32]  Nicolas Roussel,et al.  Steady and transient flow behaviour of fresh cement pastes , 2005 .

[33]  Robert Le Roy,et al.  The Marsh Cone: A Test Or a Rheological Apparatus? , 2005 .

[34]  Francisca Puertas,et al.  Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes , 2005 .

[35]  M. M. Alonso,et al.  Influencia de aditivos basados en policarboxilatos sobre el fraguado y el comportamiento reológico de pastas de cemento portland , 2005 .

[36]  M. Nehdi,et al.  Effect of Geometry, Gap, and Surface Friction of Test Accessory on Measured Rheological Properties of Cement Paste , 2003 .

[37]  M. Cyr,et al.  Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives , 2000 .

[38]  M. J. Pitt,et al.  The Marsh Funnel and Drilling Fluid Viscosity: A New Equation for Field Use , 2000 .

[39]  Hamlin M. Jennings,et al.  The influence of mixing on the rheology of fresh cement paste , 1999 .

[40]  Richard L. Hoffman,et al.  Explanations for the cause of shear thickening in concentrated colloidal suspensions , 1998 .

[41]  Leslie J. Struble,et al.  Viscosity of Portland cement paste as a function of concentration , 1995 .

[42]  L. Clements,et al.  Viscosities of vegetable oils and fatty acids , 1992 .

[43]  H. A. Barnes,et al.  Shear‐Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids , 1989 .

[44]  Richard Shaughnessy,et al.  The rheological behavior of fresh cement pastes , 1988 .

[45]  D. Roy,et al.  AN INVESTIGATION OF THE EFFECT OF ORGANIC SOLVENT ON THE RHEOLOGICAL PROPERTIES AND HYDRATION OF CEMENT PASTE , 1987 .

[46]  C. Atzeni,et al.  Comparison between rheological models for portland cement pastes , 1985 .

[47]  Phillip Frank Gower Banfill,et al.  On the viscometric examination of cement pastes , 1981 .

[48]  R. Hoffman Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests , 1974 .

[49]  R. Hoffman Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. I. Observation of a Flow Instability , 1972 .

[50]  M. M. Cross Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems , 1965 .

[51]  R. Manning,et al.  Viscosity Measurement. Kinetic Energy Correction and New Viscometer , 1960 .

[52]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[53]  G. Tattersall Structural Breakdown of Cement Pastes at Constant Rate of Shear , 1955, Nature.

[54]  J. B. Segur,et al.  Viscosity of Glycerol and Its Aqueous Solutions , 1951 .

[55]  H. N. Marsh,et al.  Properties and Treatment of Rotary Mud , 1931 .

[56]  Francisca Puertas,et al.  Compatibility between polycarboxylate-based admixtures and blended-cement pastes , 2013 .

[57]  Nicolas Roussel,et al.  The origins of thixotropy of fresh cement pastes , 2012 .

[58]  Philippe Coussot,et al.  Steady state flow of cement suspensions: A micromechanical state of the art , 2010 .

[59]  Jon Elvar Wallevik,et al.  Rheological properties of cement paste: Thixotropic behavior and structural breakdown , 2009 .

[60]  D. Bentz Influence of Shrinkage-Reducing Admixtures on Early-Age Properties of Cement Pastes , 2006 .

[61]  Rodrigo María Moreno Botella Reología de suspensiones cerámicas , 2005 .

[62]  Nicolas Roussel,et al.  The marsh cone as a viscometer: Theoretical analysis and practical limits , 2005 .

[63]  A. Papo,et al.  Rheological models for cement pastes , 1988 .

[64]  Bragg Viscosity-Measurement by , 1973 .

[65]  J. A. Brydson,et al.  Flow properties of polymer melts , 1970 .