A Wideband, Single-Layer Reflectarray Exploiting a Polarization Rotating Unit Cell

We present a new technique for designing wideband, single-layer reflectarray antennas. The proposed reflectarray exploits a wideband, polarization rotating unit cell that rotates the polarization of the reflected wave with respect to that of the incident wave by 90°. This unit cell and its mirror image were used as 1 bit spatial phase shifters capable of providing a 0°/180° phase shift over a wide bandwidth of 5.4–12.7 GHz. Using this, a reflectarray antenna with 1 bit phase quantization was designed to operate at <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-band with aperture dimensions of <inline-formula> <tex-math notation="LaTeX">$28.8\,\,\text {cm}\times 28.8$ </tex-math></inline-formula> cm and a focal length of 30 cm. A prototype of the proposed reflectarray was fabricated and characterized using a spherical near-field measurement system. We determined the antenna’s 3 dB gain bandwidth to be approximately 37.4% with a maximum realized gain of 24.2 dBi. Over its entire band of operation, the polarization purity of the antenna remains better than 13 dB and sidelobe levels of better than 12 dB were achieved.

[1]  J. Encinar,et al.  Bandwidth Improvement in Large Reflectarrays by Using True-Time Delay , 2008, IEEE Transactions on Antennas and Propagation.

[2]  D. Pozar Bandwidth of reflectarrays , 2003 .

[3]  Fan Yang,et al.  A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas , 2017, IEEE Antennas and Wireless Propagation Letters.

[4]  Radar cross‐section reduction by polarization rotation , 1995 .

[5]  Jiafu Wang,et al.  Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances , 2014 .

[6]  Fan Yang,et al.  Broadband Reflectarray Antennas Using Double-Layer Subwavelength Patch Elements , 2010, IEEE Antennas and Wireless Propagation Letters.

[7]  Nader Behdad,et al.  Ultra-Wideband, True-Time-Delay Reflectarray Antennas Using Ground-Plane-Backed, Miniaturized-Element Frequency Selective Surfaces , 2015, IEEE Transactions on Antennas and Propagation.

[8]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[9]  Xiu Yin Zhang,et al.  Single-Layer Dual-Band Reflectarray With Single Linear Polarization , 2014 .

[10]  T. Koleck,et al.  Wideband Low-Loss Linear and Circular Polarization Transmit-Arrays in V-Band , 2011, IEEE Transactions on Antennas and Propagation.

[11]  José A. Encinar,et al.  Broadband design of three-layer printed reflectarrays , 2003 .

[12]  Shiwen Yang,et al.  Wideband Folded Reflectarray Using Novel Elements With High Orthogonal Polarization Isolation , 2016, IEEE Transactions on Antennas and Propagation.

[13]  D.-C. Chang,et al.  Microstrip reflectarray antenna with offset feed , 1992 .

[14]  J. Shaker,et al.  Broadband Design of a Single Layer Large Reflectarray Using Multi Cross Loop Elements , 2009, IEEE Transactions on Antennas and Propagation.

[15]  Y. Liu,et al.  Wideband RCS Reduction of a Slot Array Antenna Using Polarization Conversion Metasurfaces , 2016, IEEE Transactions on Antennas and Propagation.

[16]  Fan Yang,et al.  A Single-Layer High-Efficiency Wideband Reflectarray Using Hybrid Design Approach , 2017, IEEE Antennas and Wireless Propagation Letters.

[17]  Yong-Chang Jiao,et al.  Design of Novel Reconfigurable Reflectarrays With Single-Bit Phase Resolution for Ku-Band Satellite Antenna Applications , 2016, IEEE Transactions on Antennas and Propagation.

[18]  W. Hong,et al.  A Polarization-Rotating SIW Reflective Surface With Two Sharp Band Edges , 2016, IEEE Antennas and Wireless Propagation Letters.

[19]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[20]  C. R. Brewitt-Taylor,et al.  Limitation on the bandwidth of artificial perfect magnetic conductor surfaces , 2007 .

[21]  L. Dussopt,et al.  Design and demonstration of 1-bit and 2-bit transmit-arrays at X-band frequencies , 2009, 2009 European Microwave Conference (EuMC).

[22]  D. Berry,et al.  The reflectarray antenna , 1963 .

[23]  Tomislav Debogovic,et al.  Low Loss MEMS-Reconfigurable 1-Bit Reflectarray Cell With Dual-Linear Polarization , 2014, IEEE Transactions on Antennas and Propagation.

[24]  M.E. Potter,et al.  On the Selection of the Number of Bits to Control a Dynamic Digital MEMS Reflectarray , 2008, IEEE Antennas and Wireless Propagation Letters.

[25]  Fan Yang,et al.  A 100-GHz Metal-Only Reflectarray for High-Gain Antenna Applications , 2016, IEEE Antennas and Wireless Propagation Letters.

[26]  Y. Liu,et al.  Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction , 2016, IEEE Transactions on Antennas and Propagation.

[27]  M. Shahabadi,et al.  Broadband Reflectarray Antenna on a Periodically Perforated Substrate , 2016, IEEE Transactions on Antennas and Propagation.

[28]  Long Li,et al.  One-Bit Digital Coding Broadband Reflectarray Based on Fuzzy Phase Control , 2017, IEEE Antennas and Wireless Propagation Letters.

[29]  A. Freni,et al.  Design, Manufacture and Test of a Low-Cost Shaped-Beam Reflectarray Using a Single Layer of Varying-Sized Printed Dipoles , 2013, IEEE Transactions on Antennas and Propagation.

[30]  Andrew R. Weily,et al.  Broadband Reflectarray Antenna Using Subwavelength Elements Based on Double Square Meander-Line Rings , 2016, IEEE Transactions on Antennas and Propagation.

[31]  H. Kamoda,et al.  60-GHz Electronically Reconfigurable Large Reflectarray Using Single-Bit Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[32]  Fan Yang,et al.  A 1-Bit $10 \times 10$ Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment , 2016, IEEE Transactions on Antennas and Propagation.

[33]  T. A. Metzler,et al.  Analysis of a reflectarray antenna using microstrip patches of variable size , 1993 .