AGILE, Fermi, Swift, and GASP/WEBT multi-wavelength observations of the high-redshift blazar 4C +71.07 in outburst

Context. The flat-spectrum radio quasar 4C +71.07 is a high-redshift (z = 2.172), γ-loud blazar whose optical emission is dominated by thermal radiation from the accretion disc. Aims. 4C +71.07 has been detected in outburst twice by the AGILE γ-ray satellite during the period from the end of October to mid-November 2015, when it reached a γ-ray flux of the order of F(E >  100 MeV)=(1.2 ± 0.3)×10−6 photons cm−2 s−1 and F(E > 100 MeV)=(3.1 ± 0.6)×10−6 photons cm−2 s−1, respectively, allowing us to investigate the properties of the jet and the emission region. Methods. We investigated its spectral energy distribution by means of almost-simultaneous observations covering the cm, mm, near-infrared, optical, ultraviolet, X-ray, and γ-ray energy bands obtained by the GASP-WEBT Consortium and the Swift, AGILE, and Fermi satellites. Results. The spectral energy distribution of the second γ-ray flare (whose energy coverage is more dense) can be modelled by means of a one-zone leptonic model, yielding a total jet power of about 4 × 1047 erg s−1. Conclusions. During the most prominent γ-ray flaring period our model is consistent with a dissipation region within the broad-line region. Moreover, this class of high-redshift, flat-spectrum radio quasars with high-mass black holes might be good targets for future γ-ray satellites such as e-ASTROGAM.

[1]  C. Kramer,et al.  POLAMI: Polarimetric Monitoring of AGN at Millimetre Wavelengths - I. The programme, calibration and calibrator data products , 2017, 1709.08742.

[2]  Didier Barret,et al.  Athena: ESA's X‐ray observatory for the late 2020s , 2017 .

[3]  D. Thompson,et al.  The e-ASTROGAM mission , 2016, 1611.02232.

[4]  D. Thompson,et al.  MINUTE-TIMESCALE >100 MeV γ-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE , 2016, The Astrophysical Journal.

[5]  M. Trifoglio,et al.  Renewed gamma-ray activity of the high-redshift quasar 0836+71 (4C 71.07) , 2015 .

[6]  M. Trifoglio,et al.  AGILE detection of enhanced gamma-ray activity from the S5 0836+71 (4C +71.07) region , 2015 .

[7]  Berkeley,et al.  NuSTAR AND MULTIFREQUENCY STUDY OF THE TWO HIGH-REDSHIFT BLAZARS S5 0836+710 AND PKS 2149–306 , 2015, 1503.04848.

[8]  V. Paliya THE HIGH-REDSHIFT BLAZAR S5 0836+71: A BROADBAND STUDY , 2015, 1502.07227.

[9]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[10]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[11]  A. Tchekhovskoy,et al.  Core shifts, magnetic fields and magnetization of extragalactic jets , 2014, 1410.7310.

[12]  Tenerife,et al.  Infrared properties of blazars: putting the GASP-WEBT sources into context , 2014, 1405.4168.

[13]  G. Borman,et al.  BVRI CCD-Photometry of Comparison Stars in the Fields of Galaxies with Active Nuclei. VI , 2014 .

[14]  M. Trifoglio,et al.  THE AGILE ALERT SYSTEM FOR GAMMA-RAY TRANSIENTS , 2013, 1401.3573.

[15]  D. N. Okhmat,et al.  The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT , 2013, 1309.1282.

[16]  D. Thompson,et al.  Long-term multiwavelength studies of high-redshift blazar 0836+710 , 2013, 1307.0529.

[17]  C. Pittori AGILE Data Center and AGILE science highlights , 2013 .

[18]  M. Trifoglio,et al.  Evaluating the Maximum Likelihood Method for Detecting Short-Term Variability of AGILE gamma-ray Sources , 2012, 1201.2602.

[19]  R. Romani,et al.  THE LUMINOSITY FUNCTION OF FERMI-DETECTED FLAT-SPECTRUM RADIO QUASARS , 2011, 1110.3787.

[20]  M. Volonteri,et al.  Blazars in the early Universe , 2011, 1103.5565.

[21]  P. Giommi,et al.  The ASDC SED Builder Tool description and Tutorial , 2011, 1103.0749.

[22]  W-P. Chen,et al.  Another look at the BL Lacertae flux and spectral variability: Observations by GASP-WEBT, XMM-Newton, and Swift in 2008―2009 , 2010, 1009.2604.

[23]  W. P. Chen,et al.  MULTIWAVELENGTH OBSERVATIONS OF 3C 454.3. III. EIGHTEEN MONTHS OF AGILE MONITORING OF THE “CRAZY DIAMOND” , 2010, 1002.1020.

[24]  G. Pareschi,et al.  Chasing the heaviest black holes of jetted active galactic nuclei , 2009, 0912.0001.

[25]  J. Chiang,et al.  THE EVOLUTION OF SWIFT/BAT BLAZARS AND THE ORIGIN OF THE MeV BACKGROUND , 2009, 0905.0472.

[26]  G. Di Cocco,et al.  Design and construction of the Mini-Calorimeter of the AGILE satellite , 2008, 0810.1842.

[27]  et al,et al.  Multifrequency monitoring of the blazar 0716+714 during the GASP-WEBT-AGILE campaign of 2007 , 2008, 0802.3012.

[28]  L. A. Antonelli,et al.  AGILE Detection of a Strong Gamma-Ray Flare from the Blazar 3C 454.3 , 2008, 0802.1709.

[29]  G. Ghisellini,et al.  The power of blazar jets , 2007, 0711.4112.

[30]  M. Feroci,et al.  SuperAGILE: The hard X-ray imager for the AGILE space mission , 2007, 0708.0123.

[31]  R. Sambruna,et al.  Swift Observations of High-Redshift Radio-loud Quasars , 2007, 0707.2925.

[32]  A. R. Bazer-Bachi,et al.  An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155–304 , 2007, 0706.0797.

[33]  E. Pian,et al.  XMM-Newton observations of a sample of γ-ray loud active galactic nuclei , 2006, astro-ph/0603268.

[34]  E. Mattaini,et al.  The AGILE anticoincidence detector , 2006 .

[35]  N. Gehrels,et al.  Swift Observations of the X-Ray-Bright GRB 050315 , 2005, astro-ph/0510677.

[36]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[37]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[38]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[39]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[40]  M. Tavani,et al.  The AGILE Mission , 2003, 0807.4254.

[41]  Giulio Fedel,et al.  The AGILE silicon tracker: an innovative γ-ray instrument for space , 2003 .

[42]  C. Fassnacht,et al.  The Cosmic Lens All-Sky Survey - I. Source selection and observations , 2002, astro-ph/0211073.

[43]  Merate,et al.  Relativistic large-scale jets and minimum power requirements , 2001, astro-ph/0103007.

[44]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[45]  et al,et al.  The European Photon Imaging Camera on XMM-Newton: The MOS cameras : The MOS cameras , 2000, astro-ph/0011498.

[46]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[47]  D. L. Bertsch,et al.  The Third EGRET Catalog of High-Energy Gamma-Ray Sources , 1998 .

[48]  G. Massone,et al.  Optical photometric monitoring of γ-ray loud blazars. - I. Observations from November 1994 to November 1995 , 1997 .

[49]  D. L. Bertsch,et al.  The Likelihood Analysis of EGRET Data , 1996 .

[50]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[51]  R. Schlickeiser,et al.  On the Location of the Acceleration and Emission Sites in Gamma-Ray Blazars , 1993, astro-ph/9312052.

[52]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .