Phase transitions and phonon thermodynamics in giant piezoelectric Mn-doped K0.5Na0.5NbO3−LiBiO3 crystals studied by Raman spectroscopy

[1]  Jiagang Wu,et al.  The Role of Adding Bi0.5A0.5ZrO3 in Affecting Orthorhombic-Tetragonal Phase Transition Temperature and Electrical Properties in Potassium Sodium Niobate Ceramics , 2020, Acta Materialia.

[2]  Jinzhong Zhang,et al.  Temperature and pressure manipulation of magnetic ordering and phonon dynamics with phase transition in multiferroic GdFeO3 : Evidence from Raman scattering , 2020 .

[3]  Kui Chen,et al.  (Bi0.5Na0.5)ZrO3 modified KNN-based ceramics: Enhanced electrical properties and temperature insensitivity , 2020 .

[4]  C. Randall,et al.  Ultrahigh piezoelectric coefficient of a lead-free K0.5Na0.5NbO3-based single crystal fabricated by a simple seed-free solid-state growth method , 2019, Journal of Materials Chemistry C.

[5]  K. Jiang,et al.  Decoding Phases of Matter by Machine-Learning Raman Spectroscopy , 2019 .

[6]  X. Ren,et al.  Morphotropic Relaxor Boundary in a Relaxor System Showing Enhancement of Electrostrain and Dielectric Permittivity. , 2019, Physical review letters.

[7]  J. Chu,et al.  Exploring lattice symmetry evolution with discontinuous phase transition by Raman scattering criteria: The single-crystalline (K,Na)NbO3 model system , 2019, Physical Review B.

[8]  Wei Li,et al.  Progress in high-strain perovskite piezoelectric ceramics , 2019, Materials Science and Engineering: R: Reports.

[9]  H. Moriwake,et al.  Raman scattering study of the ferroelectric phase transition in BaT i 2 O 5 , 2018 .

[10]  S. Gorfman,et al.  Structural transformations in (1 -x ) Na 0.5 Bi 0.5 TiO 3 -x BaTiO 3 single crystals studied by Raman spectroscopy , 2017 .

[11]  Genshui Wang,et al.  Structure evolution mechanism of Na 0.5 Bi 2.5 Nb 2 -x W x O 9 +δ ferroelectric ceramics: Temperature-dependent optical evidence and first-principles calculations , 2017 .

[12]  J. Chu,et al.  In Situ Exploration of Thermal-Induced Domain Evolution with Phase Transition in LiNbO3-Modified K0.5Na0.5NbO3 Single Crystal , 2017 .

[13]  M. Jiang,et al.  Microstructure, piezoelectric, ferroelectric and dielectric properties of Na0.5K0.5NbO3 single crystals prepared by seed-free solid-state crystal growth , 2016 .

[14]  Hui‐Ming Cheng,et al.  Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2 , 2016, Scientific Reports.

[15]  Zongyan Zhao,et al.  Electronic structures of efficient MBiO3 (M = Li, Na, K, Ag) photocatalyst* , 2016 .

[16]  E. L. Clézio,et al.  Crystal Growth and Piezoelectric Properties of Lead-free Based K0.5Na0.5NbO3 by the Floating Zone Method , 2016 .

[17]  A. del Campo,et al.  Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral-Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties. , 2015, ACS applied materials & interfaces.

[18]  C. Randall,et al.  Seed‐Free Solid‐State Growth of Large Lead‐Free Piezoelectric Single Crystals: (Na1/2K1/2)NbO3 , 2015 .

[19]  Zhenrong Li,et al.  Effects of annealing on dielectric and ferroelectric properties in Pb(In1/2Nb1/2)O3–xPbTiO3(x≤0.30) ceramics , 2015 .

[20]  W. Schmidt,et al.  Raman scattering efficiency inLiTaO3andLiNbO3crystals , 2015 .

[21]  J. H. Zhang,et al.  Phase transitions and thermotropic phase boundaries in MnO2-doped (K0.5Na0.5)NbO3-0.05LiNbO3 single crystals: Raman scattering evidence at elevated temperatures , 2015 .

[22]  Y. Liu,et al.  Dielectric, piezoelectric properties of MnO2-doped (K0.5Na0.5)NbO3–0.05LiNbO3 crystal grown by flux-Bridgman method , 2014 .

[23]  Jianguo Zhu,et al.  Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. , 2014, Journal of the American Chemical Society.

[24]  Ke Wang,et al.  (K, Na)NbO3‐Based Lead‐Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges , 2013 .

[25]  P. Ajayan,et al.  Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers. , 2013, Nanoscale.

[26]  Limei Zheng,et al.  Large size lead-free (Na,K)(Nb,Ta)O3 piezoelectric single crystal: growth and full tensor properties , 2013 .

[27]  Doru C. Lupascu,et al.  Temperature‐Insensitive (K,Na)NbO3‐Based Lead‐Free Piezoactuator Ceramics , 2013 .

[28]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[29]  A. Kulkarni,et al.  Structure composition correlation in KNN–BT ceramics – An X-ray diffraction and Raman spectroscopic investigation , 2013 .

[30]  Xiaohong Zhu,et al.  Raman tensor analysis of (K0.5Na0.5)NbO3–LiSbO3 lead‐free ceramics and its application to study grain/domain orientation , 2012 .

[31]  J. J. Romero,et al.  High spatial resolution structure of (K,Na)NbO3 lead-free ferroelectric domains , 2012 .

[32]  Jingfeng Li,et al.  Phase structure and electrical properties of (Li,Ta)-doped (K,Na)NbO3 lead-free piezoceramics in the vicinity of Na/K = 50/50 , 2011, Journal of Materials Science.

[33]  V. Marinova,et al.  Local structural phenomena in pure and Ru-doped 0.9PbZn 1/3Nb2/3O3-0.1PbTiO3 near the morphotropic phase boundary as revealed by Raman spectroscopy , 2011 .

[34]  K. Kakimoto,et al.  Ferroelectric Domain Characterization of Orthorhombic Sodium–Potassium Niobate Piezoelectric Crystals , 2010 .

[35]  H. Chan,et al.  Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1−xLix(Nb1−yTay)O3 lead-free piezoelectric ceramics , 2007 .

[36]  Danfeng Yang,et al.  Dielectric and piezoelectric properties of lead-free 0.95(K0.5Na0.5)NbO3–0.05LiNbO3 crystals grown by the Bridgman method , 2007 .

[37]  Yongfa Zhu,et al.  Synthesis of hexagonal BaTa2O6 nanorods and influence of defects on the photocatalytic activity. , 2006, The journal of physical chemistry. B.

[38]  Thomas R. Shrout,et al.  Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics , 2006 .

[39]  Y. Noguchi,et al.  Defect control for low leakage current in K0.5Na0.5NbO3 single crystals , 2006 .

[40]  K. Uchino,et al.  Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics , 2006 .

[41]  Yiping Guo,et al.  Raman Scattering Study of Piezoelectric (Na0.5K0.5)NbO3-LiNbO3 Ceramics , 2005 .

[42]  Masato Matsubara,et al.  Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3−K5.4CuTa10O29 ceramics , 2005 .

[43]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[44]  K. Kakimoto,et al.  Solid-Solution Structure and Piezoelectric Property of KNbO3 Ceramics Doped with Small Amounts of Elements , 2004 .

[45]  C. Chi,et al.  High frequency dielectric properties of Ba(Mg1/3Ta2/3)O3 complex perovskite ceramics , 2003 .

[46]  J. Kubacki,et al.  Electronic structure of NaNbO3–Mn single crystals , 2001 .

[47]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[48]  Ravendran Ratheesh,et al.  Vibrational Analysis of Ba5−xSrxNb4O15Microwave Dielectric Ceramic Resonators , 1997 .

[49]  Klauer,et al.  Local symmetry of hydrogen in cubic and tetragonal SrTiO3 and KTaO3:Li determined by polarized Raman scattering. , 1992, Physical review letters.

[50]  A. Hewat,et al.  Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: neutron powder profile refinement of the structures , 1973 .

[51]  V. Tennery High‐Temperature Phase Transitions in Na Nb O3 , 1965 .

[52]  G. Shirane,et al.  Phase Transitions in Ferroelectric KNbO 3 , 1954 .