Non-orthogonal Multiple Access in a Downlink Multiuser Beamforming System

In this paper, we propose a non-orthogonal multiple access-based multiuser beamforming (NOMA-BF) system designed to enhance the sum capacity. In the proposed NOMA-BF system, a single BF vector is shared by two users, so that the number of supportable users can be increased. However, sharing a BF vector leads to interference from other beams as well as from the other user sharing the BF vector. Therefore, to reduce interference and improve the sum capacity, we additionally propose a clustering and power allocation algorithm. This clustering algorithm, which selects two users with high correlation and a large gain-difference between their channels, can reduce the interference from other beams and from the other user as well. Furthermore, power allocation ensures that each user's transmit power is allocated so as to maximize the sum capacity. Numerical results verify that the proposed NOMA-BF system improves the sum capacity, compared to the conventional multiuser BF system.