Conditions for the existence of convolution representations

For an important family of linear shift-invariant multidimensional maps that take (measurable) bounded inputs into bounded outputs, necessary and sufficient conditions are given for the existence of convolution representations with integrable impulse responses.

[1]  V. Niola,et al.  Proceedings of the 7th WSEAS International Conference on Signal Processing , 2006 .

[2]  Maurizio Ciampa,et al.  A note on impulse response for continuous, linear, time-invariant, continuous-time systems , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  I. Sandberg On the representation of linear system half-line maps: Research Articles , 2005 .

[4]  Irwin W. Sandberg On the representation of linear system half-line maps , 2005, Int. J. Circuit Theory Appl..

[5]  Irwin W. Sandberg Notes on linear systems and frequency responses: Research Articles , 2005 .

[6]  Irwin W. Sandberg,et al.  Notes on linear systems and frequency responses , 2005, Int. J. Circuit Theory Appl..

[7]  Irwin W. Sandberg,et al.  Bounded Inputs and the Representation of Linear System Maps , 2005 .

[8]  I. Sandberg Notes on Linear Systems and Impulse Responses , 2004 .

[9]  Irwin W. Sandberg,et al.  Continuous Multidimensional Systems and the Impulse Response Scandal , 2004, Multidimens. Syst. Signal Process..

[10]  I. W. Sandberg,et al.  Causality and the impulse response scandal , 2003 .

[11]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[12]  Irwin W. Sandberg,et al.  Notes on representation theorems for linear discrete-space systems , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[13]  Bent E. Petersen Introduction to the Fourier transform & pseudo-differential operators , 1983 .

[14]  A. C. Sim,et al.  Distribution Theory and Transform Analysis , 1966 .

[15]  A. Zemanian Distribution Theory and Transform Analysis; An Introduction to Generalized Functions, With Applications , 1965 .

[16]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .