Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity

[1]  Michael J. Cowan,et al.  Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons , 2018, Nature Medicine.

[2]  Christopher D. Brown,et al.  A dementia-associated risk variant near TMEM106B alters chromatin architecture and gene expression , 2017, bioRxiv.

[3]  T. Reinheckel,et al.  Lysosomal processing of progranulin , 2017, Molecular Neurodegeneration.

[4]  L. Petrucelli,et al.  The lysosomal protein cathepsin L is a progranulin protease , 2017, Molecular Neurodegeneration.

[5]  S. Strittmatter,et al.  Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal Dementia-Related Phenotypes in Progranulin-Deficient Mice , 2017, Neuron.

[6]  Qiudong Deng,et al.  Intracellular Proteolysis of Progranulin Generates Stable, Lysosomal Granulins that Are Haploinsufficient in Patients with Frontotemporal Dementia Caused by GRN Mutations , 2017, eNeuro.

[7]  Tuancheng Feng,et al.  Regulation of cathepsin D activity by the FTLD protein progranulin , 2017, Acta Neuropathologica.

[8]  Joseph Amick,et al.  C9orf72: At the intersection of lysosome cell biology and neurodegenerative disease , 2017, Traffic.

[9]  H. Rhinn,et al.  Differential Aging Analysis in Human Cerebral Cortex Identifies Variants in TMEM106B and GRN that Regulate Aging Phenotypes. , 2017, Cell systems.

[10]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[11]  A. Pandey,et al.  Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling , 2016, PLoS genetics.

[12]  Joseph Amick,et al.  C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling , 2016, Molecular biology of the cell.

[13]  Jian-Fu Chen,et al.  A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy , 2016, Science Advances.

[14]  Alexandra M. Nicholson,et al.  What we know about TMEM106B in neurodegeneration , 2016, Acta Neuropathologica.

[15]  L. Zon,et al.  Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease , 2016, Science Translational Medicine.

[16]  M. Oulad-Abdelghani,et al.  Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin‐2 to induce motor neuron dysfunction and cell death , 2016, The EMBO journal.

[17]  M. Smolka,et al.  The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway , 2016, Acta neuropathologica communications.

[18]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[19]  H. Horvitz,et al.  Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice , 2015, Neuron.

[20]  L. Petrucelli,et al.  C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD , 2015, Neuron.

[21]  Yingyu Chen,et al.  Transmembrane protein 106a activates mouse peritoneal macrophages via the MAPK and NF-κB signaling pathways , 2015, Scientific Reports.

[22]  Raymond D. Schellevis,et al.  C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits , 2015, Annals of neurology.

[23]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits , 2015, Science.

[24]  S. Rivaud-Pechoux,et al.  Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions , 2014, Neurobiology of Aging.

[25]  Stacy D. Grunke,et al.  Intracerebroventricular viral injection of the neonatal mouse brain for persistent and widespread neuronal transduction. , 2014, Journal of Visualized Experiments.

[26]  Peter K. Todd,et al.  Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS , 2014, Neuron.

[27]  S. Strittmatter,et al.  Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B , 2014, Molecular and Cellular Neuroscience.

[28]  D. Mann,et al.  Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2014, Acta neuropathologica communications.

[29]  M. Murray,et al.  Differential clinicopathologic and genetic features of late-onset amnestic dementias , 2014, Acta Neuropathologica.

[30]  Carlos Cruchaga,et al.  TMEM106B: a strong FTLD disease modifier , 2014, Acta Neuropathologica.

[31]  N. Fox,et al.  TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions , 2014, Acta Neuropathologica.

[32]  Kevin F. Bieniek,et al.  TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia , 2014, Acta Neuropathologica.

[33]  C. Hoogenraad,et al.  The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes , 2013, The EMBO journal.

[34]  M. Grossman,et al.  Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. , 2013, JAMA neurology.

[35]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[36]  E. Kremmer,et al.  Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.

[37]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[38]  B. Boeve,et al.  TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia , 2013, Journal of neurochemistry.

[39]  D. Borchelt,et al.  Capsid Serotype and Timing of Injection Determines AAV Transduction in the Neonatal Mice Brain , 2013, PloS one.

[40]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[41]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[42]  O. Brady,et al.  The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. , 2013, Human molecular genetics.

[43]  Timothy P. Levine,et al.  The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs , 2013, Bioinform..

[44]  L. Aravind,et al.  Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease , 2012, Front. Gene..

[45]  Frances M. Platt,et al.  Lysosomal storage disorders: The cellular impact of lysosomal dysfunction , 2012, The Journal of cell biology.

[46]  J. Trojanowski,et al.  TMEM106B, the Risk Gene for Frontotemporal Dementia, Is Regulated by the microRNA-132/212 Cluster and Affects Progranulin Pathways , 2012, The Journal of Neuroscience.

[47]  R. Petersen,et al.  TMEM106B risk variant is implicated in the pathologic presentation of Alzheimer disease , 2012, Neurology.

[48]  E. Kremmer,et al.  Membrane Orientation and Subcellular Localization of Transmembrane Protein 106B (TMEM106B), a Major Risk Factor for Frontotemporal Lobar Degeneration*♦ , 2012, The Journal of Biological Chemistry.

[49]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[50]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[51]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[52]  J. Morris,et al.  Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. , 2011, Archives of neurology.

[53]  K. Sleegers,et al.  TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort , 2011, Brain : a journal of neurology.

[54]  D. Geschwind,et al.  TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers , 2010, Neurology.

[55]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[56]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[57]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[58]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[59]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[60]  J. Neuhaus,et al.  Comparison of family histories in FTLD subtypes and related tauopathies , 2005, Neurology.

[61]  Philip Scheltens,et al.  Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. , 2003, Brain : a journal of neurology.

[62]  J R Hodges,et al.  The prevalence of frontotemporal dementia , 2002, Neurology.

[63]  Francesco Cecconi,et al.  Gene trap: a way to identify novel genes and unravel their biological function , 2000, FEBS letters.

[64]  M. Oulad-Abdelghani,et al.  Loss of C 9 ORF 72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death , 2016 .

[65]  M. Murray,et al.  Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A , 2014, Acta Neuropathologica.