Every flock generalized quadrangle has a hemisystem

We prove that every flock generalised quadrangle contains a hemisystem, and we provide a construction method which unifies our results with the examples of Cossidente and Penttila in the classical case.

[1]  Maska Law,et al.  Classification of flocks of the quadratic cone over fields of order at most 29 , 2003 .

[2]  J. Thas,et al.  Derivation of Flocks of Quadratic Cones , 1990 .

[3]  Tim Penttila,et al.  Hemisystems on the Hermitian Surface , 2005 .

[4]  Stanley E. Payne,et al.  The Fundamental Theorem of q-Clan Geometry , 1996, Des. Codes Cryptogr..

[5]  John Bamberg,et al.  Tight sets and m-ovoids of finite polar spaces , 2007, J. Comb. Theory, Ser. A.

[6]  R. C. Bose,et al.  Geometric and pseudo-geometric graphs (q2+1,q+1,1) , 1972 .

[7]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[8]  Norbert Knarr,et al.  A geometric construction of generalized quadrangles from polar spaces of rank three , 1992 .

[9]  Joseph A. Thas,et al.  Generalized Quadrangles and Flocks of Cones , 1987, Eur. J. Comb..

[10]  Finite geometries: classical problems and recent developments , 2007 .

[11]  B. Segre Forme e geometrie hermitiane, con particolare riguardo al caso finito , 1965 .

[12]  John Bamberg,et al.  A hemisystem of a nonclassical generalised quadrangle , 2009, Des. Codes Cryptogr..

[13]  ELATION GENERALIZED QUADRANGLES FOR WHICH THE NUMBER OF LINES ON A POINT IS THE SUCCESSOR OF A PRIME , 2008, Journal of the Australian Mathematical Society.

[14]  Peter Wild,et al.  FINITE PROJECTIVE SPACES OF THREE DIMENSIONS (Oxford Mathematical Monographs) , 1987 .

[15]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[16]  J. Thas,et al.  General Galois geometries , 1992 .

[17]  Maska Law,et al.  Symmetries of BLT-Sets , 2003, Des. Codes Cryptogr..

[18]  J. Thas Projective Geometry over a Finite Field , 1995 .