Every flock generalized quadrangle has a hemisystem
暂无分享,去创建一个
[1] Maska Law,et al. Classification of flocks of the quadratic cone over fields of order at most 29 , 2003 .
[2] J. Thas,et al. Derivation of Flocks of Quadratic Cones , 1990 .
[3] Tim Penttila,et al. Hemisystems on the Hermitian Surface , 2005 .
[4] Stanley E. Payne,et al. The Fundamental Theorem of q-Clan Geometry , 1996, Des. Codes Cryptogr..
[5] John Bamberg,et al. Tight sets and m-ovoids of finite polar spaces , 2007, J. Comb. Theory, Ser. A.
[6] R. C. Bose,et al. Geometric and pseudo-geometric graphs (q2+1,q+1,1) , 1972 .
[7] J. Hirschfeld. Finite projective spaces of three dimensions , 1986 .
[8] Norbert Knarr,et al. A geometric construction of generalized quadrangles from polar spaces of rank three , 1992 .
[9] Joseph A. Thas,et al. Generalized Quadrangles and Flocks of Cones , 1987, Eur. J. Comb..
[10] Finite geometries: classical problems and recent developments , 2007 .
[11] B. Segre. Forme e geometrie hermitiane, con particolare riguardo al caso finito , 1965 .
[12] John Bamberg,et al. A hemisystem of a nonclassical generalised quadrangle , 2009, Des. Codes Cryptogr..
[13] ELATION GENERALIZED QUADRANGLES FOR WHICH THE NUMBER OF LINES ON A POINT IS THE SUCCESSOR OF A PRIME , 2008, Journal of the Australian Mathematical Society.
[14] Peter Wild,et al. FINITE PROJECTIVE SPACES OF THREE DIMENSIONS (Oxford Mathematical Monographs) , 1987 .
[15] J. Thas,et al. Finite Generalized Quadrangles , 2009 .
[16] J. Thas,et al. General Galois geometries , 1992 .
[17] Maska Law,et al. Symmetries of BLT-Sets , 2003, Des. Codes Cryptogr..
[18] J. Thas. Projective Geometry over a Finite Field , 1995 .