Logics of metric spaces

We investigate the expressive power and computational properties of two different types of languages intended for speaking about distances. First, we consider a first-order language FM the two-variable fragment of which turns out to be undecidable in the class of distance spaces validating the triangular inequality as well as in the class of all metric spaces. Yet, this two-variable fragment is decidable in various weaker classes of distance spaces. Second, we introduce a variable-free modal language MS that, when interpreted in metric spaces, has the same expressive power as the two-variable fragment of FM. We determine natural and expressive fragments of MS which are decidable in various classes of distance spaces validating the triangular inequality, in particular, the class of all metric spaces.

[1]  Dov M. Gabbay,et al.  Temporal logic (vol. 1): mathematical foundations and computational aspects , 1994 .

[2]  Patrick Blackburn,et al.  Nominal Tense Logic , 1992, Notre Dame J. Formal Log..

[3]  M. de Rijke,et al.  The Modal Logic of Inequality , 1992, J. Symb. Log..

[4]  Michael Mortimer,et al.  On languages with two variables , 1975, Math. Log. Q..

[5]  Valentin Goranko,et al.  Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..

[6]  Jorge Lobo,et al.  Modal logics for knowledge representation systems , 1991 .

[7]  Ramon Jansana,et al.  Some Logics Related to von Wright's Logic of Place , 1994, Notre Dame J. Formal Log..

[8]  Yoram Hirshfeld,et al.  Quantitative Temporal Logic , 1999, CSL.

[9]  Phokion G. Kolaitis,et al.  On the Decision Problem for Two-Variable First-Order Logic , 1997, Bulletin of Symbolic Logic.

[10]  Frank Wolter,et al.  Connecting Abstract Description Systems , 2002 .

[11]  Martin Fürer,et al.  The computational complexity of the unconstrained limited domino problem (with implications for logical decision problems) , 1983, Logic and Machines.

[12]  Tinko Tinchev,et al.  Modal Environment for Boolean Speculations , 1987 .

[13]  Dov M. Gabbay,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects: Volume 2 , 1994 .

[14]  Nobu-Yuki Suzuki,et al.  Kripke Frame with Graded Accessibility and Fuzzy Possible World Semantics , 1997, Stud Logica.

[15]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[16]  Dov M. Gabbay,et al.  EXPRESSIVE FUNCTIONAL COMPLETENESS IN TENSE LOGIC , 1981 .

[17]  Ulrike Sattler,et al.  Modal Logic and the Two-Variable Fragment , 2001, CSL.

[18]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[19]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[20]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[21]  A. Wilkie THE CLASSICAL DECISION PROBLEM (Perspectives in Mathematical Logic) By Egon Börger, Erich Grädel and Yuri Gurevich: 482 pp., DM.158.–, ISBN 3 540 57073 X (Springer, 1997). , 1998 .

[22]  Martin Otto,et al.  On Logics with Two Variables , 1999, Theor. Comput. Sci..

[23]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[24]  Nicholas Rescher,et al.  Topological Logic , 1969, Journal of Symbolic Logic.

[25]  Thomas A. Henzinger,et al.  It's About Time: Real-Time Logics Reviewed , 1998, CONCUR.

[26]  Alexander Moshe Rabinovich,et al.  Expressive Completeness of Duration Calculus , 2000, Inf. Comput..

[27]  Thomas A. Henzinger,et al.  Logics and Models of Real Time: A Survey , 1991, REX Workshop.

[28]  Oliver Lemon,et al.  On the Incompleteness of Modal Logics of Space: Advancing Complete Modal Logics of Place , 1996, Advances in Modal Logic.

[29]  Angelo Montanari,et al.  Metric and Layered Temporal Logic for Time Granularity , 1996, ILLC dissertation series.

[30]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[31]  V. Goranko Completeness and Incompleteness in the Bimodal Base ℒ(R,−R) , 1990 .

[32]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[33]  Kousha Etessami,et al.  First-Order Logic with Two Variables and Unary Temporal Logic , 2002, Inf. Comput..

[34]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.