Compressed self-avoiding walks, bridges and polygons
暂无分享,去创建一个
Anthony J. Guttmann | Nicholas R. Beaton | Gregory F. Lawler | Iwan Jensen | G. Lawler | I. Jensen | A. Guttmann | N. R. Beaton
[1] T. B. Grimley. The Configuration of Real Polymer Chains , 1951 .
[2] G. Lawler,et al. Lattice effects in the scaling limit of the two-dimensional self-avoiding walk , 2011, 1109.3091.
[3] K. Binder,et al. Mechanical desorption of a single chain: unusual aspects of phase coexistence at a first-order transition. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] Ian G. Enting,et al. Generating functions for enumerating self-avoiding rings on the square lattice , 1980 .
[5] A. Owczarek,et al. Pulling absorbing and collapsing polymers from a surface , 2004, cond-mat/0410189.
[6] A new transfer-matrix algorithm for exact enumerations: self-avoiding walks on the square lattice , 2013, 1309.6709.
[7] Anthony J Guttmann,et al. Analysis of series expansions for non-algebraic singularities , 2014, 1405.5327.
[8] G. Lawler. Cut Times for Simple Random Walk , 1996 .
[9] Wendelin Werner,et al. Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.
[10] Wendelin Werner,et al. Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .
[11] N. R. Beaton. The critical pulling force for self-avoiding walks , 2014, 1407.1917.
[12] Bernard Nienhuis,et al. Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .
[13] Wendelin Werner,et al. Values of Brownian intersection exponents III: Two-sided exponents , 2002 .
[14] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[15] G. Slade,et al. Logarithmic Correction for the Susceptibility of the 4-Dimensional Weakly Self-Avoiding Walk: A Renormalisation Group Analysis , 2014, 1403.7422.
[16] G. Lawler,et al. Universality for conformally invariant intersection exponents , 2000 .
[17] I. Jensen,et al. A new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice , 2011, 1111.5877.
[18] S. Whittington,et al. Adsorbed self-avoiding walks subject to a force , 2013, 1307.6457.
[19] S. Smirnov. The connective constant of the honeycomb lattice equals 2+2 , 2012 .
[20] O. Schramm,et al. Conformal restriction: The chordal case , 2002, math/0209343.
[21] Iwan Jensen. Enumeration of self-avoiding walks on the square lattice , 2004 .
[22] I. Jensen,et al. Polygons pulled from an adsorbing surface , 2017, 1702.06564.
[23] Gordon Slade,et al. Self-avoiding walk in five or more dimensions I. The critical behaviour , 1992 .
[24] O. Schramm,et al. On the scaling limit of planar self-avoiding walk , 2002, math/0204277.
[25] A R Conway,et al. Algebraic techniques for enumerating self-avoiding walks on the square lattice , 1993 .
[26] H. Duminil-Copin,et al. The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.
[27] G. Lawler,et al. Minkowski content and natural parameterization for the Schramm–Loewner evolution , 2012, 1211.4146.
[28] I. Jensen,et al. Pulling adsorbed self-avoiding walks from a surface , 2013, 1309.7401.
[29] Wenke Zhang,et al. Single molecule mechanochemistry of macromolecules , 2003 .
[30] J. Hammersley. Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[31] N. Clisby. Accurate estimate of the critical exponent nu for self-avoiding walks via a fast implementation of the pivot algorithm. , 2010, Physical review letters.
[32] W. J. C. Orr,et al. Statistical treatment of polymer solutions at infinite dilution , 1947 .