Compressed self-avoiding walks, bridges and polygons

We study various self-avoiding walks (SAWs) which are constrained to lie in the upper half-plane and are subjected to a compressive force. This force is applied to the vertex or vertices of the walk located at the maximum distance above the boundary of the half-space. In the case of bridges, this is the unique end-point. In the case of SAWs or self-avoiding polygons, this corresponds to all vertices of maximal height. We first use the conjectured relation with the Schramm-Loewner evolution to predict the form of the partition function including the values of the exponents, and then we use series analysis to test these predictions.

[1]  T. B. Grimley The Configuration of Real Polymer Chains , 1951 .

[2]  G. Lawler,et al.  Lattice effects in the scaling limit of the two-dimensional self-avoiding walk , 2011, 1109.3091.

[3]  K. Binder,et al.  Mechanical desorption of a single chain: unusual aspects of phase coexistence at a first-order transition. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Ian G. Enting,et al.  Generating functions for enumerating self-avoiding rings on the square lattice , 1980 .

[5]  A. Owczarek,et al.  Pulling absorbing and collapsing polymers from a surface , 2004, cond-mat/0410189.

[6]  A new transfer-matrix algorithm for exact enumerations: self-avoiding walks on the square lattice , 2013, 1309.6709.

[7]  Anthony J Guttmann,et al.  Analysis of series expansions for non-algebraic singularities , 2014, 1405.5327.

[8]  G. Lawler Cut Times for Simple Random Walk , 1996 .

[9]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.

[10]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[11]  N. R. Beaton The critical pulling force for self-avoiding walks , 2014, 1407.1917.

[12]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[13]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[14]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[15]  G. Slade,et al.  Logarithmic Correction for the Susceptibility of the 4-Dimensional Weakly Self-Avoiding Walk: A Renormalisation Group Analysis , 2014, 1403.7422.

[16]  G. Lawler,et al.  Universality for conformally invariant intersection exponents , 2000 .

[17]  I. Jensen,et al.  A new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice , 2011, 1111.5877.

[18]  S. Whittington,et al.  Adsorbed self-avoiding walks subject to a force , 2013, 1307.6457.

[19]  S. Smirnov The connective constant of the honeycomb lattice equals 2+2 , 2012 .

[20]  O. Schramm,et al.  Conformal restriction: The chordal case , 2002, math/0209343.

[21]  Iwan Jensen Enumeration of self-avoiding walks on the square lattice , 2004 .

[22]  I. Jensen,et al.  Polygons pulled from an adsorbing surface , 2017, 1702.06564.

[23]  Gordon Slade,et al.  Self-avoiding walk in five or more dimensions I. The critical behaviour , 1992 .

[24]  O. Schramm,et al.  On the scaling limit of planar self-avoiding walk , 2002, math/0204277.

[25]  A R Conway,et al.  Algebraic techniques for enumerating self-avoiding walks on the square lattice , 1993 .

[26]  H. Duminil-Copin,et al.  The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.

[27]  G. Lawler,et al.  Minkowski content and natural parameterization for the Schramm–Loewner evolution , 2012, 1211.4146.

[28]  I. Jensen,et al.  Pulling adsorbed self-avoiding walks from a surface , 2013, 1309.7401.

[29]  Wenke Zhang,et al.  Single molecule mechanochemistry of macromolecules , 2003 .

[30]  J. Hammersley Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  N. Clisby Accurate estimate of the critical exponent nu for self-avoiding walks via a fast implementation of the pivot algorithm. , 2010, Physical review letters.

[32]  W. J. C. Orr,et al.  Statistical treatment of polymer solutions at infinite dilution , 1947 .