Tracing widespread Early Miocene ignimbrite eruptions and petrogenesis at the onset of the Carpathian-Pannonian Region silicic volcanism

[1]  D. Karátson,et al.  The relationship between ignimbrite lithofacies and topography in a foothill setting formed on Miocene pyroclastics – a case study from the Bükkalja, Northern Hungary , 2022, Hungarian Geographical Bulletin.

[2]  A. Guillin,et al.  Long-runout pyroclastic density currents: Analysis and implications , 2022, Geology.

[3]  G. Norini,et al.  Formal definition and description of lithostratigraphic units related to the Miocene silicic pyroclastic rocks outcropping in Northern Hungary: A revision , 2022, Geologica Carpathica.

[4]  D. Karátson,et al.  Large-magnitude (VEI ≥ 7) ‘wet’ explosive silicic eruption preserved a Lower Miocene habitat at the Ipolytarnóc Fossil Site, North Hungary , 2022, Scientific Reports.

[5]  U. Schaltegger,et al.  The importance of high precision in the evaluation of U-Pb zircon age spectra , 2022, Chemical Geology.

[6]  P. Kamp,et al.  Linking proximal ignimbrites and coeval distal tephra deposits to establish a record of voluminous Early Quaternary (2.4–1.9 Ma) volcanism of the Tauranga Volcanic Centre, New Zealand , 2022, Journal of Volcanology and Geothermal Research.

[7]  H. Svensen,et al.  Local melt contamination and global climate impact: Dating the emplacement of Karoo LIP sills into organic-rich shale , 2022, Earth and Planetary Science Letters.

[8]  T. Hansteen,et al.  The Medial Offshore Record of Explosive Volcanism Along the Central to Eastern Aegean Volcanic Arc: 1. Tephrostratigraphic Correlations , 2021, Geochemistry, Geophysics, Geosystems.

[9]  L. Caricchi,et al.  Timescales and thermal evolution of large silicic magma reservoirs during an ignimbrite flare-up: perspectives from zircon , 2021, Contributions to Mineralogy and Petrology.

[10]  A. Rees,et al.  TephraNZ: a major- and trace-element reference dataset for glass-shard analyses from prominent Quaternary rhyolitic tephras in New Zealand and implications for correlation , 2021, Geochronology.

[11]  G. Giordano,et al.  Classification of ignimbrites and their eruptions , 2021 .

[12]  E. Laita,et al.  Karst bauxite formation during Miocene Climatic Optimum (central Dalmatia, Croatia): mineralogical, compositional and geochronological perspectives , 2021, International Journal of Earth Sciences.

[13]  J. Farrell,et al.  No single model for supersized eruptions and their magma bodies , 2021, Nature Reviews Earth & Environment.

[14]  T. Ehlers,et al.  Controls by rheological structure of the lithosphere on the temporal evolution of continental magmatism: Inferences from the Pannonian Basin system , 2021, Earth and Planetary Science Letters.

[15]  J. Hammerli,et al.  Combined Hf and Nd isotope microanalysis of co-existing zircon and REE-rich accessory minerals: High resolution insights into crustal processes , 2021 .

[16]  P. Fiannacca,et al.  Crustal melting vs. fractionation of basaltic magmas: Part 2, Attempting to quantify mantle and crustal contributions in granitoids , 2021 .

[17]  P. Fiannacca,et al.  Crustal melting vs. fractionation of basaltic magmas: Part 1, The bipolar disorder of granite petrogenetic models , 2021 .

[18]  D. Garbe‐Schönberg,et al.  Gigantic eruption of a Carpathian volcano marks the largest Miocene transgression of Eastern Paratethys , 2021, Earth and Planetary Science Letters.

[19]  O. Mandic,et al.  Miocene tuffs from the Dinarides and Eastern Alps as proxies of the Pannonian Basin lithosphere dynamics and tropospheric circulation patterns in Central Europe , 2021, Journal of the Geological Society.

[20]  M. Kovacova,et al.  40Ar/39Ar geochronology of Burdigalian paleobotanical localities in the central Paratethys (south Slovakia) , 2021 .

[21]  G. Csillag,et al.  Crustal exhumation and depocenter migration from the Alpine orogenic margin towards the Pannonian extensional back-arc basin controlled by inheritance , 2021 .

[22]  D. Karátson,et al.  A Lower Miocene pyroclastic-fall deposit from the Bükk Foreland Volcanic Area, Northern Hungary: Clues for an eastward-located source , 2021 .

[23]  M. Guillong,et al.  Tephrostratigraphy and Magma Evolution Based on Combined Zircon Trace Element and U-Pb Age Data: Fingerprinting Miocene Silicic Pyroclastic Rocks in the Pannonian Basin , 2021, Frontiers in Earth Science.

[24]  Z. Pécskay,et al.  Tidal deposits in the Early Miocene Central Paratethys: the Vučji Jarek and Čemernica members of the Macelj formation (NW Croatia) , 2021 .

[25]  Kuo‐Lung Wang,et al.  A history of violence: magma incubation, timing and tephra distribution of the Los Chocoyos supereruption (Atitlán Caldera, Guatemala) , 2021, Journal of Quaternary Science.

[26]  E. Aydar,et al.  Zircon geochronology and O-Hf isotopes of Cappadocian ignimbrites: New insights into continental crustal architecture underneath the Central Anatolian Volcanic Province, Turkey , 2020 .

[27]  G. Giordano,et al.  The Magnitude of the 39.8 ka Campanian Ignimbrite Eruption, Italy: Method, Uncertainties and Errors , 2020, Frontiers in Earth Science.

[28]  B. Coira,et al.  Calderas , 2020, Out of the Crater.

[29]  Kuo‐Lung Wang,et al.  Miocene syn-rift evolution of the North Croatian Basin (Carpathian–Pannonian Region): new constraints from Mts. Kalnik and Požeška gora volcaniclastic record with regional implications , 2020, International Journal of Earth Sciences.

[30]  N. Zupančič,et al.  Multiple processes in the genesis of the Pohorje igneous complex: Evidence from petrology and geochemistry , 2020 .

[31]  S. Takarada,et al.  Distribution and Eruptive Volume of Aso-4 Pyroclastic Density Current and Tephra Fall Deposits, Japan: A M8 Super-Eruption , 2020, Frontiers in Earth Science.

[32]  P. Brack,et al.  Hafnium isotopic record of mantle-crust interaction in an evolving continental magmatic system , 2020 .

[33]  Mark A. Rademacher,et al.  The Arce Tephra: Two subsequent paroxysmal Plinian eruptions from Coatepeque Caldera (El Salvador) , 2020 .

[34]  Yongjun Lu,et al.  No evidence for high-pressure melting of Earth’s crust in the Archean , 2019, Nature Communications.

[35]  M. Schmitz,et al.  Reconstructing a Snake River Plain ‘super-eruption’ via compositional fingerprinting and high-precision U/Pb zircon geochronology , 2019, Contributions to Mineralogy and Petrology.

[36]  R. Muhammad,et al.  Tephra glass chemistry provides storage and discharge details of five magma reservoirs which fed the 75 ka Youngest Toba Tuff eruption, northern Sumatra , 2019, Journal of Quaternary Science.

[37]  M. Kovacova,et al.  New 40Ar/39Ar, fission track and sedimentological data on a middle Miocene tuff occurring in the Vienna Basin: Implications for the north-western Central Paratethys region , 2019, Geologica Carpathica.

[38]  J. Gamble,et al.  The Huckleberry Ridge Tuff, Yellowstone: evacuation of multiple magmatic systems in a complex episodic eruption , 2019, Journal of Petrology.

[39]  G. Vougioukalakis,et al.  The Late Bronze Age Eruption of Santorini Volcano and Its Impact on the Ancient Mediterranean World , 2019, Elements.

[40]  O. Bachmann,et al.  Maturation and rejuvenation of a silicic magma reservoir: High-resolution chronology of the Kneeling Nun Tuff , 2019, Earth and Planetary Science Letters.

[41]  I. Dunkl,et al.  Episodes of dormancy and eruption of the Late Pleistocene Ciomadul volcanic complex (Eastern Carpathians, Romania) constrained by zircon geochronology , 2019, Journal of Volcanology and Geothermal Research.

[42]  L. Baumgartner,et al.  The zircon Hf isotope archive of rapidly changing mantle sources in the south Patagonian retro-arc , 2018, GSA Bulletin.

[43]  M. Frische,et al.  Miocene to Holocene Marine Tephrostratigraphy Offshore Northern Central America and Southern Mexico: Pulsed Activity of Known Volcanic Complexes , 2018, Geochemistry, Geophysics, Geosystems.

[44]  J. Vervoort,et al.  Generation of I-type granitic rocks by melting of heterogeneous lower crust , 2018, Geology.

[45]  L. Baumgartner,et al.  Zircon petrochronology reveals the timescale and mechanism of anatectic magma formation , 2018, Earth and Planetary Science Letters.

[46]  M. Kováč,et al.  Towards better correlation of the Central Paratethys regional time scale with the standard geological time scale of the Miocene Epoch , 2018, Geologica Carpathica.

[47]  J. Sliwinski,et al.  Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications , 2018 .

[48]  M. Kovácic,et al.  Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review , 2018 .

[49]  H. Gilg,et al.  The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene , 2018, International Journal of Earth Sciences.

[50]  Murray A. Jorgensen,et al.  Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: review and evaluation , 2017 .

[51]  O. Mandic,et al.  Changing seas in the Early–Middle Miocene of Central Europe: a Mediterranean approach to Paratethyan stratigraphy , 2017 .

[52]  R. Abart,et al.  Mantle xenoliths from Szentbékálla, Balaton: Geochemical and petrological constraints on the evolution of the lithospheric mantle underneath Pannonian Basin, Hungary , 2017 .

[53]  Q. Yin,et al.  The role of mantle‐derived magmas in the isotopic evolution of Yellowstone's magmatic system , 2017 .

[54]  A. Quadt,et al.  ID-TIMS U-Pb geochronology at the 0.1‰ level using 1013 Ω resistors and simultaneous U and 18O/16O isotope ratio determination for accurate UO2 interference correction , 2017 .

[55]  G. Leonard,et al.  Ignimbrite flare-ups and their drivers: A New Zealand perspective , 2016 .

[56]  S. Hemming,et al.  Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 1. Tephra ages and provenance , 2016 .

[57]  J. Bowring,et al.  Community‐Derived Standards for LA‐ICP‐MS U‐(Th‐)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting , 2016 .

[58]  J. Baker,et al.  Generation and Rejuvenation of a Supervolcanic Magmatic System: a Case Study from Mangakino Volcanic Centre, New Zealand , 2016 .

[59]  R. Anczkiewicz,et al.  U–Pb zircon geochronology and anomalous Sr–Nd–Hf isotope systematics of late orogenic andesites: Pieniny Klippen Belt, Western Carpathians, South Poland , 2016 .

[60]  S. Cloetingh,et al.  The link between tectonics and sedimentation in back‐arc basins: New genetic constraints from the analysis of the Pannonian Basin , 2016 .

[61]  G. Valentine,et al.  Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption , 2016, Nature Communications.

[62]  I. Peytcheva,et al.  High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors , 2016 .

[63]  A. Petrik,et al.  Cenozoic structural evolution of the southwestern Bükk Mts. and the southern part of the Darnó Deformation Belt (NE Hungary) , 2016 .

[64]  J. Sliwinski,et al.  Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe , 2015, Contributions to Mineralogy and Petrology.

[65]  U. Schaltegger,et al.  Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions , 2015, Scientific Reports.

[66]  P. Wallace,et al.  Micro-analytical Perspectives on the Bishop Tuff and its Magma Chamber , 2015 .

[67]  F. Hilgen,et al.  High-precision zircon U–Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene , 2014 .

[68]  G. Giordano,et al.  Calderas and magma reservoirs , 2014 .

[69]  T. Ireland,et al.  Temporal evolution and compositional signatures of two supervolcanic systems recorded in zircons from Mangakino volcanic centre, New Zealand , 2014, Contributions to Mineralogy and Petrology.

[70]  P. Renne,et al.  Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: rethinking the remelting model , 2014, Contributions to Mineralogy and Petrology.

[71]  D. A. John,et al.  Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA , 2013 .

[72]  A. Deino,et al.  The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions , 2013 .

[73]  L. Matenco,et al.  On the formation and evolution of the Pannonian Basin: Constraints derived from the structure of the junction area between the Carpathians and Dinarides , 2012 .

[74]  O. Mandic,et al.  Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of Northern Croatia , 2012, International Journal of Earth Sciences.

[75]  O. Mandic,et al.  Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides , 2012, Tectonophysics.

[76]  G. Stuart,et al.  Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian-Pannonian region: Asthenospheric flow as a driving force for Cenozoic extension and extrusion? , 2012 .

[77]  H. Downes,et al.  Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region , 2011 .

[78]  T. Plank,et al.  The Hf–Nd isotopic composition of marine sediments , 2011 .

[79]  S. Schmid,et al.  Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula , 2011 .

[80]  D. Lowe Tephrochronology and its application: A review , 2011 .

[81]  A. Freundt,et al.  Eruptive history and magmatic evolution of the 1.9 kyr Plinian dacitic Chiltepe Tephra from Apoyeque volcano in west-central Nicaragua , 2011 .

[82]  S. Schmid,et al.  Evolution of the Adria‐Europe plate boundary in the northern Dinarides: From continent‐continent collision to back‐arc extension , 2010 .

[83]  J. Faulds,et al.  Ash-flow tuffs in the Nine Hill, Nevada, paleovalley and implications for tectonism and volcanism of the western Great Basin, USA , 2010 .

[84]  M. Harzhauser,et al.  Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia) , 2010 .

[85]  T. Ntaflos,et al.  Bimodal pumice populations in the 13.5 Ma Harsány ignimbrite, Bükkalja Volcanic Field, Northern Hungary: Syn-eruptive mingling of distinct rhyolitic magma batches? , 2009 .

[86]  S. Schmid,et al.  A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene , 2008 .

[87]  W. Frisch,et al.  Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine-Pannonian-Dinaridic junction, Slovenia , 2008 .

[88]  C. Szabó,et al.  A micro-scale investigation of melt production and extraction in the upper mantle based on silicate melt pockets in ultramafic xenoliths from the Bakony–Balaton Highland Volcanic Field (Western Hungary) , 2008 .

[89]  I. Nairn,et al.  Compositional heterogeneity in tephra deposits resulting from the eruption of multiple magma bodies: Implications for tephrochronology , 2008 .

[90]  M. Thirlwall,et al.  Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkaline Volcanic Rocks in the Western Carpathian Arc, Eastern Central Europe , 2007 .

[91]  C. Macpherson,et al.  Amphibole “sponge” in arc crust? , 2007 .

[92]  P. Renne,et al.  U-Pb and 40Ar/39Ar dating of the Miocene fossil track site at Ipolytarnóc (Hungary) and its implications , 2007 .

[93]  Colin J. N. Wilson,et al.  Compositional Zoning of the Bishop Tuff , 2007 .

[94]  Z. Pécskay,et al.  Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area , 2006 .

[95]  James D. L. White,et al.  Primary volcaniclastic rocks , 2006 .

[96]  P. Mason,et al.  Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: In situ trace element data of glass shards and mineral chemical constraints , 2005 .

[97]  K. Balogh,et al.  Buried Neogene volcanic structures in Hungary , 2004 .

[98]  O. Bachmann,et al.  On the Origin of Crystal-poor Rhyolites: Extracted from Batholithic Crystal Mushes , 2004 .

[99]  S. Self,et al.  Rhyolite magma processes of the ∼AD 1315 Kaharoa eruption episode, Tarawera volcano, New Zealand , 2004 .

[100]  Z. Pécskay,et al.  Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis , 2004 .

[101]  M. Thirlwall,et al.  Lower crustal granulite xenoliths from the Pannonian Basin, Hungary, Part 2: Sr–Nd–Pb–Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust , 2003 .

[102]  M. Tiepolo,et al.  Growth of early continental crust controlled by melting of amphibolite in subduction zones , 2002, Nature.

[103]  Colin J. N. Wilson,et al.  The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview , 2001 .

[104]  M. Kováč,et al.  Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle , 2001 .

[105]  E. Stadlbauer,et al.  Stratigraphy of the Kos Plateau Tuff: product of a major Quaternary explosive rhyolitic eruption in the eastern Aegean, Greece , 1999 .

[106]  L. Csontos,et al.  The Mid-Hungarian line: a zone of repeated tectonic inversions: Tectonophysics , 1998 .

[107]  F. Albarède,et al.  A Hf‐Nd isotopic correlation in ferromanganese nodules , 1998 .

[108]  L. Fodor,et al.  Miocene‐Pliocene tectonic evolution of the Slovenian Periadriatic fault: Implications for Alpine‐Carpathian extrusion models , 1998 .

[109]  D. Lowry,et al.  Crustal Assimilation as a Major Petrogenetic Process in the East Carpathian Neogene and Quaternary Continental Margin Arc, Romania , 1996 .

[110]  F. Bea Residence of REE, Y, Th and U in granites and crustal protoliths : implications for the chemistry of crustal melts , 1996 .

[111]  B. Houghton,et al.  An exceptionally widespread ignimbrite with implications for pyroclastic flow emplacement , 1995, Nature.

[112]  W. McDonough,et al.  The composition of the Earth , 1995 .

[113]  L. Csontos Tertiary tectonic evolution of the Intra-Carpathian area: a review: Acta Vulcan , 1995 .

[114]  F. Horváth,et al.  Tertiary evolution of the Intra-Carpathian area: A model , 1992 .

[115]  L. Csontos,et al.  Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region: Tectonophysics , 1992 .

[116]  I. Wendt,et al.  The statistical distribution of the mean squared weighted deviation , 1992 .

[117]  Colin J. N. Wilson,et al.  The Taupo eruption, New Zealand I. General aspects , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[118]  C. Wilson The Taupo eruption, New Zealand. II. The Taupo Ignimbrite , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[119]  C. Szabó,et al.  Melt-rock interaction in the lower crust based on silicate melt inclusions in mafic garnet granulite xenoliths, Bakony–Balaton Highland , 2021 .

[120]  S. Tapster,et al.  High-precision ID-TIMS Cassiterite U-Pb systematics using a low-contamination hydrothermal decomposition: implications for LA-ICP-MS and ore deposit geochronology , 2020 .

[121]  M. Kovacova,et al.  The Central Paratethys palaeoceanography: A water circulation model based on microfossil proxies, climate, and changes of depositional environment , 2017 .

[122]  U. Schaltegger,et al.  High-precision time-space correlation through coupled apatite and zircon tephrochronology: An example from the Permian-Triassic boundary in South China , 2017 .

[123]  Richard J. Brown,et al.  Deposits of Pyroclastic Density Currents , 2015 .

[124]  T. Tóth,et al.  Evolution of the Pannonian basin and its geothermal resources , 2015 .

[125]  M. Handy,et al.  Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion , 2014, International Journal of Earth Sciences.

[126]  J. Baker,et al.  Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption , 2012 .

[127]  C. Szabó,et al.  Middle Miocene volcanism in the vicinity of the Middle Hungarian zone: Evidence for an inherited enriched mantle source , 2008 .

[128]  Sierd Cloetingh,et al.  Formation and deformation of the Pannonian Basin: constraints from observational data , 2006, Geological Society, London, Memoirs.

[129]  S. Harangi Neogene to Quaternary volcanism of the Carpathian-Pannonian Region - A review , 2001 .

[130]  V. Fred Palaeogeographic Considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene) , 1998 .

[131]  Z. Pécskay,et al.  Miocene acidic explosive volcanism in the Bukk Foreland, Hungary: Identifying eruptive sequences and searching for source locations , 1998 .

[132]  M. Thirlwall,et al.  Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle , 1992 .