Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

[1]  A. I. Zad,et al.  One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor , 2017 .

[2]  Mehdi Shabani‐Nooshabadi,et al.  Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications , 2017 .

[3]  Qi Li,et al.  Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors , 2017, Journal of Electronic Materials.

[4]  Lucimara S. Roman,et al.  Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor , 2017 .

[5]  M. Yin,et al.  The effect of anions on the electrochemical properties of polyaniline for supercapacitors. , 2017, Physical chemistry chemical physics : PCCP.

[6]  S. Laref,et al.  Ab Initio Investigation of the Structural and Electronic Properties of HgTe/CdTe Superlattices , 2017, Journal of Electronic Materials.

[7]  S. Shahrokhian,et al.  A High Performance Supercapacitor Based on Graphene/Polypyrrole/Cu2O–Cu(OH)2 Ternary Nanocomposite Coated on Nickel Foam , 2017 .

[8]  Yan Li,et al.  Fabrication of vesicular polyaniline using hard templates and composites with graphene for supercapacitor , 2017, Journal of Solid State Electrochemistry.

[9]  Xuehong Lu,et al.  Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials , 2017 .

[10]  S. Ramesh,et al.  Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application , 2017 .

[11]  John Wang,et al.  Graphene-based materials for supercapacitor electrodes – A review , 2016 .

[12]  Xiaopeng Xiong,et al.  A three-dimensional TiO2/graphene porous composite with nano-carbon deposition for supercapacitor , 2016, Journal of Materials Science.

[13]  P. Xiong,et al.  Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost supercapacitors with high rate capability , 2015 .

[14]  Minghua Wang,et al.  Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions , 2015 .

[15]  Vu Thi Bach Phuong,et al.  A Simple Approach to the Fabrication of Graphene-Carbon Nanotube Hybrid Films on Copper Substrate by Chemical Vapor Deposition , 2015 .

[16]  Hongtao Liu,et al.  Graphene‐based materials for flexible electrochemical energy storage , 2015 .

[17]  S. Ghasemi,et al.  Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage , 2015 .

[18]  Hui Xu,et al.  Investigation of polyaniline films doped with Co2+ as the electrode material for electrochemical supercapacitors , 2015, Ionics.

[19]  C. H. Ng,et al.  Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor , 2015 .

[20]  Pramod K. Kalambate,et al.  High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode , 2015 .

[21]  N. Huang,et al.  Electrochemical properties of free‐standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor , 2015 .

[22]  G. Han,et al.  Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors , 2014 .

[23]  G. Shi,et al.  Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors , 2014 .

[24]  V. C. Zoldan,et al.  Polyaniline nanofibers–graphene oxide nanoplatelets composite thin film electrodes for electrochemical capacitors , 2014 .

[25]  Tianyu Liu,et al.  Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors , 2014 .

[26]  B. Tay,et al.  Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications , 2014 .

[27]  C. Das,et al.  Transition Metal-Doped Polyaniline/Single-Walled Carbon Nanotubes Nanocomposites: Efficient Electrode Material for High Performance Supercapacitors , 2014 .

[28]  B. Mu,et al.  Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes. , 2014, Physical chemistry chemical physics : PCCP.

[29]  Fang Hu,et al.  Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite , 2014 .

[30]  Hui Xu,et al.  Electrochemical polymerization of polyaniline doped with Zn2+ as the electrode material for electrochemical supercapacitors , 2014, Journal of Solid State Electrochemistry.

[31]  C. Das,et al.  H+, Fe3+ codoped polyaniline/MWCNTs nanocomposite: Superior electrode material for supercapacitor application , 2013 .

[32]  C. Das,et al.  Supercapacitor based on H+ and Ni2+ co-doped polyaniline–MWCNTs nanocomposite: synthesis and electrochemical characterization , 2013 .

[33]  C. Das,et al.  Copper chloride-doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications , 2013 .

[34]  Hui Xu,et al.  Investigation of polyaniline films doped with Fe3+ as the electrode material for electrochemical supercapacitors , 2013 .

[35]  J. C. Poler,et al.  High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices , 2013, Journal of Materials Science.

[36]  Afshin Pendashteh,et al.  Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor , 2013 .

[37]  B. Mu,et al.  Synthesis of polyaniline/carbon black hybrid hollow microspheres by layer-by-layer assembly used as electrode materials for supercapacitors , 2013 .

[38]  Ruijie Deng,et al.  Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material , 2012 .

[39]  S. Ramaprabhu,et al.  Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte , 2011 .

[40]  Xiaogang Zhang,et al.  Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film , 2011 .

[41]  Zhongwei Chen,et al.  Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films , 2011 .

[42]  Xingbin Yan,et al.  Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. , 2011, Nanoscale.

[43]  Jingjing Xu,et al.  Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. , 2010, ACS nano.

[44]  Q. Xue,et al.  Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. , 2010, ACS applied materials & interfaces.

[45]  Hai-Bo Lu,et al.  Investigation of polyaniline co-doped with Zn2+ and H+ as the electrode material for electrochemical supercapacitors , 2010 .

[46]  Zhixiang Wei,et al.  Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors , 2010 .

[47]  Kai Zhang,et al.  Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes , 2010 .

[48]  B. He,et al.  Electrochemical properties of polyaniline in p-toluene sulfonic acid solution , 2009 .

[49]  Xujie Yang,et al.  Graphene oxide doped polyaniline for supercapacitors , 2009 .

[50]  Jixiao Wang,et al.  Theoretical and experimental specific capacitance of polyaniline in sulfuric acid , 2009 .

[51]  Bin Wang,et al.  In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors , 2009 .

[52]  G. Venkatachari,et al.  Influence of metal cations on the inhibitive effect of polyaniline for iron in 0.5 M H2SO4 , 2008 .

[53]  Hongyu Mi,et al.  Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors , 2008 .

[54]  D. Bhat,et al.  N and p doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors , 2007 .

[55]  D. Y. Kim,et al.  Supercapacitive properties of polyaniline/Nafion/hydrous RuO2 composite electrodes , 2007 .

[56]  M. Temperini,et al.  Spectroscopic characterization of polyaniline doped with transition metal salts , 2006 .

[57]  Chunming Yang,et al.  Synthesis, characterisation and properties of polyanilines containing transition metal ions , 2005 .

[58]  C. A. Amarnath,et al.  Mannich-type reaction in solvent free condition using reusable polyaniline catalyst , 2004 .

[59]  Hong Dong,et al.  Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates , 2004 .

[60]  O. Park,et al.  Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber , 2002 .

[61]  Bin Chen,et al.  Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor , 2001 .

[62]  J. Joo,et al.  Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution , 2001 .

[63]  Soon Ho Chang,et al.  Comparison of lithium//polyaniline secondary batteries with different dopants of HCl and lithium ionic salts , 2000 .

[64]  S. M. Long,et al.  Li+ doping-induced localization in polyaniline , 1999 .

[65]  S. Chen,et al.  Polyaniline Doped by the New Class of Dopant, Ionic Salt: Structure and Properties , 1995 .

[66]  H. Morimoto,et al.  The polyaniline/lithium battery , 1987 .

[67]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[68]  M. Maksimovic,et al.  Solution , 1902, The Mathematical Gazette.

[69]  N. Hieu,et al.  Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors , 2017 .

[70]  S. Pat,et al.  Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique , 2016, Journal of Electronic Materials.

[71]  N. Manyala,et al.  Symmetric supercapacitors based on porous 3D interconnected carbon framework , 2015 .