Targeting the nucleotide metabolism of Trypanosoma brucei and other trypanosomatids

Abstract African sleeping sickness, Chagas disease, and leishmaniasis are life-threatening diseases that together affect millions of people around the world and are caused by different members of the protozoan family Trypanosomatidae. The most studied member of the family is Trypanosoma brucei, which is spread by tsetse flies and causes African sleeping sickness. Nucleotide metabolism in T. brucei and other trypanosomatids is significantly different from that of mammals and was recognized as a target for chemotherapy already in the 1970–1980s. A more thorough investigation of the nucleotide metabolism in recent years has paved the way for identifying nucleoside analogues that can cure T. brucei brain infections in animal models. Specific features of T. brucei nucleotide metabolism include the lack of de novo purine biosynthesis, the presence of very efficient purine transporters, the lack of salvage pathways for CTP synthesis, unique enzyme localizations, and a recently discovered novel pathway for dTTP synthesis. This review describes the nucleotide metabolism of T. brucei, highlights differences and similarities to other trypanosomatids, and discusses how to exploit the parasite-specific features for drug development.

[1]  Manal J. Natto,et al.  Cloning and Characterization of Trypanosoma congolense and T. vivax Nucleoside Transporters Reveal the Potential of P1-Type Carriers for the Discovery of Broad-Spectrum Nucleoside-Based Therapeutics against Animal African Trypanosomiasis , 2023, International journal of molecular sciences.

[2]  S. Magez,et al.  Recent progress in diagnosis and treatment of Human African Trypanosomiasis has made the elimination of this disease a realistic target by 2030 , 2022, Frontiers in Medicine.

[3]  A. Crispini,et al.  Zinc(II) Complex with Pyrazolone-Based Hydrazones is Strongly Effective against Trypanosoma brucei Which Causes African Sleeping Sickness , 2022, Inorganic chemistry.

[4]  M. Lappin,et al.  Review and statistical analysis of clinical management of feline leishmaniosis caused by Leishmania infantum , 2022, Parasites & Vectors.

[5]  S. Svärd,et al.  Giardia intestinalis thymidine kinase is a high-affinity enzyme crucial for DNA synthesis and an exploitable target for drug discovery , 2022, The Journal of biological chemistry.

[6]  H. D. de Koning,et al.  Nucleoside analogues for the treatment of animal trypanosomiasis , 2022, International journal for parasitology. Drugs and drug resistance.

[7]  A. E. Vidal,et al.  Inosine triphosphate pyrophosphatase from Trypanosoma brucei cleanses cytosolic pools from deaminated nucleotides , 2022, Scientific reports.

[8]  S. Welburn,et al.  An Update on African Trypanocide Pharmaceutics and Resistance , 2022, Frontiers in Veterinary Science.

[9]  Maria Paola Costi,et al.  Multitarget, Selective Compound Design Yields Potent Inhibitors of a Kinetoplastid Pteridine Reductase 1 , 2022, Journal of medicinal chemistry.

[10]  Chantal Reigada,et al.  Revisiting trypanosomatid nucleoside diphosphate kinases , 2022, Memorias do Instituto Oswaldo Cruz.

[11]  Sushma Sharma,et al.  Isocratic HPLC analysis for the simultaneous determination of dNTPs, rNTPs and ADP in biological samples , 2021, Nucleic Acids Research.

[12]  E. Chatelain,et al.  The Chagas disease study landscape: A systematic review of clinical and observational antiparasitic treatment studies to assess the potential for establishing an individual participant-level data platform , 2021, PLoS neglected tropical diseases.

[13]  S. van Calenbergh,et al.  Revisiting Pyrazolo[3,4-d]pyrimidine Nucleosides as Anti-Trypanosoma cruzi and Antileishmanial Agents. , 2021, Journal of medicinal chemistry.

[14]  Galadriel Hovel-Miner,et al.  Effects of trypanocidal drugs on DNA synthesis: new insights into melarsoprol growth inhibition , 2021, Parasitology.

[15]  F. Di Virgilio,et al.  Ectonucleotidases in Acute and Chronic Inflammation , 2021, Frontiers in Pharmacology.

[16]  D. González-Pacanowska,et al.  A Mitochondrial Orthologue of the dNTP Triphosphohydrolase SAMHD1 Is Essential and Controls Pyrimidine Homeostasis in Trypanosoma brucei. , 2021, ACS infectious diseases.

[17]  Seok-Yong Lee,et al.  Toward a Molecular Basis of Cellular Nucleoside Transport in Humans. , 2020, Chemical reviews.

[18]  J. Takahashi,et al.  Sleeping Sickness Disrupts the Sleep-Regulating Adenosine System , 2020, The Journal of Neuroscience.

[19]  Khalid J. Alzahrani,et al.  Structure-activity relationship exploration of 3'-deoxy-7-deazapurine nucleoside analogues as anti-Trypanosoma brucei agents. , 2020, ACS infectious diseases.

[20]  G. Cecchi,et al.  Monitoring the elimination of human African trypanosomiasis at continental and country level: Update to 2018 , 2020, PLoS neglected tropical diseases.

[21]  H. D. de Koning,et al.  Purine and pyrimidine transporters of pathogenic protozoa - conduits for therapeutic agents. , 2020, Medicinal research reviews.

[22]  J. Palmer,et al.  Centering Patient Expectations of a Novel Home-Based Oral Drug Treatment among T. b. rhodesiense Human African Trypanosomiasis Patients in Uganda , 2020, Tropical Medicine and Infectious Disease.

[23]  H. D. de Koning,et al.  C6-O-alkylated 7-deazainosine nucleoside analogues: Discovery of potent and selective anti-sleeping sickness agents. , 2020, European journal of medicinal chemistry.

[24]  H. D. de Koning,et al.  Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness , 2019, Nature Communications.

[25]  F. Gago,et al.  Structure‐Guided Tuning of a Selectivity Switch towards Ribonucleosides in Trypanosoma brucei Purine Nucleoside 2′‐Deoxyribosyltransferase , 2019, Chembiochem : a European journal of chemical biology.

[26]  D. González-Pacanowska,et al.  Contribution of Cytidine Deaminase to Thymidylate Biosynthesis in Trypanosoma brucei: Intracellular Localization and Properties of the Enzyme , 2019, mSphere.

[27]  A. L. Mazzeti,et al.  Synergic Effect of Allopurinol in Combination with Nitroheterocyclic Compounds against Trypanosoma cruzi , 2019, Antimicrobial Agents and Chemotherapy.

[28]  F. Gay,et al.  Leishmaniasis , 2019, The Lancet.

[29]  F. Frézard,et al.  Canine Leishmaniasis: An Overview of the Current Status and Strategies for Control , 2018, BioMed research international.

[30]  Khalid J. Alzahrani,et al.  Trypanosoma brucei bloodstream forms express highly specific and separate transporters for adenine and hypoxanthine; evidence for a new protozoan purine transporter family? , 2018, Molecular and biochemical parasitology.

[31]  V. Dubey,et al.  Fresh insights into the pyrimidine metabolism in the trypanosomatids , 2018, Parasites & Vectors.

[32]  D. Hardie,et al.  Keeping the home fires burning†: AMP-activated protein kinase , 2018, Journal of The Royal Society Interface.

[33]  Katsuhisa Inoue Molecular Basis of Nucleobase Transport Systems in Mammals. , 2017, Biological & pharmaceutical bulletin.

[34]  J. Meyer-Fernandes,et al.  3'nucleotidase/nuclease in protozoan parasites: Molecular and biochemical properties and physiological roles. , 2017, Experimental parasitology.

[35]  Khalid J. Alzahrani,et al.  9-(2′-Deoxy-2′-Fluoro-β-d-Arabinofuranosyl) Adenine Is a Potent Antitrypanosomal Adenosine Analogue That Circumvents Transport-Related Drug Resistance , 2017, Antimicrobial Agents and Chemotherapy.

[36]  Jennifer J. Kohler,et al.  Pyrimidine Salvage Enzymes Are Essential for De Novo Biosynthesis of Deoxypyrimidine Nucleotides in Trypanosoma brucei , 2016, PLoS pathogens.

[37]  A. Fairlamb,et al.  Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase , 2016, PLoS neglected tropical diseases.

[38]  H. D. de Koning,et al.  Trypanosoma brucei Methylthioadenosine Phosphorylase Protects the Parasite from the Antitrypanosomal Effect of Deoxyadenosine , 2016, The Journal of Biological Chemistry.

[39]  S. Shuto,et al.  Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals , 2016, PLoS Neglected Tropical Diseases.

[40]  K. Stuart,et al.  GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway , 2015, Molecular microbiology.

[41]  H. D. de Koning,et al.  Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei , 2015, Front. Pharmacol..

[42]  D. Sexton,et al.  Trypanotoxic activity of thiosemicarbazone iron chelators. , 2015, Experimental parasitology.

[43]  M. Barrett,et al.  University of Dundee Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1 , 2014 .

[44]  A. Karlsson,et al.  The many isoforms of human adenylate kinases. , 2014, The international journal of biochemistry & cell biology.

[45]  A. Ivens,et al.  Genome wide dissection of the quorum sensing signaling pathway in Trypanosoma brucei , 2013, Nature.

[46]  H. D. de Koning,et al.  Aquaporin 2 Mutations in Trypanosoma brucei gambiense Field Isolates Correlate with Decreased Susceptibility to Pentamidine and Melarsoprol , 2013, PLoS neglected tropical diseases.

[47]  A. Fairlamb,et al.  Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy , 2013, Molecular microbiology.

[48]  B. Ullman,et al.  Adenine and adenosine salvage in Leishmania donovani. , 2013, Molecular and biochemical parasitology.

[49]  H. D. de Koning,et al.  Pyrimidine Biosynthesis Is Not an Essential Function for Trypanosoma brucei Bloodstream Forms , 2013, PloS one.

[50]  P. Yates,et al.  Adenylosuccinate Synthetase and Adenylosuccinate Lyase Deficiencies Trigger Growth and Infectivity Deficits in Leishmania donovani* , 2013, The Journal of Biological Chemistry.

[51]  M. Barrett,et al.  Functional expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity for diminazene uptake☆ , 2013, International journal for parasitology. Drugs and drug resistance.

[52]  Mark C. Field,et al.  Pyrimidine Salvage in Trypanosoma brucei Bloodstream Forms and the Trypanocidal Action of Halogenated Pyrimidines , 2013, Molecular Pharmacology.

[53]  G. E. Cánepa,et al.  Molecular and Functional Characterization of a Trypanosoma cruzi Nuclear Adenylate Kinase Isoform , 2013, PLoS neglected tropical diseases.

[54]  A. E. Vidal,et al.  Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation, double strand break formation and VSG switching in Trypanosoma brucei. , 2012, DNA repair.

[55]  F. Bringaud,et al.  Functional Characterization of TbMCP5, a Conserved and Essential ADP/ATP Carrier Present in the Mitochondrion of the Human Pathogen Trypanosoma brucei* , 2012, The Journal of Biological Chemistry.

[56]  J. Hiltunen,et al.  Transfer of metabolites across the peroxisomal membrane. , 2012, Biochimica et biophysica acta.

[57]  Terry K. Smith,et al.  Synthesis and Biological Evaluation of CTP Synthetase Inhibitors as Potential Agents for the Treatment of African Trypanosomiasis , 2012, ChemMedChem.

[58]  M. Barrett,et al.  Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes , 2012, Proceedings of the National Academy of Sciences.

[59]  I. Miinalainen,et al.  Channel-Forming Activities in the Glycosomal Fraction from the Bloodstream Form of Trypanosoma brucei , 2012, PloS one.

[60]  M. Vodnala,et al.  Trypanosoma brucei Thymidine Kinase Is Tandem Protein Consisting of Two Homologous Parts, Which Together Enable Efficient Substrate Binding* , 2012, The Journal of Biological Chemistry.

[61]  M. Miranda,et al.  Singular Features of Trypanosomatids' Phosphotransferases Involved in Cell Energy Management , 2011, Enzyme research.

[62]  J. Meyer-Fernandes,et al.  Ecto-phosphatases in protozoan parasites: possible roles in nutrition, growth and ROS sensing , 2011, Journal of bioenergetics and biomembranes.

[63]  A. Fairlamb,et al.  Dissecting the Metabolic Roles of Pteridine Reductase 1 in Trypanosoma brucei and Leishmania major* , 2011, The Journal of Biological Chemistry.

[64]  Terry K. Smith,et al.  Synthesis and in vitro/in vivo Evaluation of the Antitrypanosomal Activity of 3-Bromoacivicin, a Potent CTP Synthetase Inhibitor , 2010, ChemMedChem.

[65]  David G. Watson,et al.  A Molecular Mechanism for Eflornithine Resistance in African Trypanosomes , 2010, PLoS pathogens.

[66]  A. Fairlamb,et al.  Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice , 2010, Molecular microbiology.

[67]  H. D. de Koning,et al.  Evaluation of Nucleoside Hydrolase Inhibitors for Treatment of African Trypanosomiasis , 2010, Antimicrobial Agents and Chemotherapy.

[68]  P. Rathod,et al.  The crystal structure and activity of a putative trypanosomal nucleoside phosphorylase reveal it to be a homodimeric uridine phosphorylase. , 2010, Journal of molecular biology.

[69]  C. Burri,et al.  Human African trypanosomiasis , 2010, The Lancet.

[70]  C. Clayton,et al.  Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation. , 2009, Molecular and biochemical parasitology.

[71]  L. Scapozza,et al.  Adenosine Kinase of T. b. rhodesiense Identified as the Putative Target of 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine Using Chemical Proteomics , 2009, PLoS neglected tropical diseases.

[72]  K. Kristensson,et al.  Preclinical Assessment of the Treatment of Second-Stage African Trypanosomiasis with Cordycepin and Deoxycoformycin , 2009, PLoS neglected tropical diseases.

[73]  Ian H. Gilbert,et al.  One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening , 2009, Journal of medicinal chemistry.

[74]  A. Fairlamb,et al.  Chemical and genetic validation of dihydrofolate reductase–thymidylate synthase as a drug target in African trypanosomes , 2008, Molecular microbiology.

[75]  P. Mäser,et al.  Adenosine Kinase Mediates High Affinity Adenosine Salvage in Trypanosoma brucei* , 2008, Journal of Biological Chemistry.

[76]  A. Karlsson,et al.  Human UMP-CMP Kinase 2, a Novel Nucleoside Monophosphate Kinase Localized in Mitochondria* , 2008, Journal of Biological Chemistry.

[77]  J. Sufrin,et al.  Novel Trypanocidal Analogs of 5′-(Methylthio)-Adenosine , 2007, Antimicrobial Agents and Chemotherapy.

[78]  P. Mäser,et al.  Adenosine Kinase of Trypanosoma brucei and Its Role in Susceptibility to Adenosine Antimetabolites , 2007, Antimicrobial Agents and Chemotherapy.

[79]  A. Hofer,et al.  Expression, Purification, Characterization, and in Vivo Targeting of Trypanosome CTP Synthetase for Treatment of African Sleeping Sickness* , 2007, Journal of Biological Chemistry.

[80]  N. Quashie,et al.  Trypanosoma brucei: a survey of pyrimidine transport activities. , 2006, Experimental parasitology.

[81]  M. Miranda,et al.  An expanded adenylate kinase gene family in the protozoan parasite Trypanosoma cruzi. , 2006, Biochimica et biophysica acta.

[82]  K. Kristensson,et al.  Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model. , 2005, The Journal of infectious diseases.

[83]  H. D. de Koning,et al.  Molecular Pharmacology of Adenosine Transport in Trypanosoma brucei: P1/P2 Revisited , 2005, Molecular Pharmacology.

[84]  K. Gull,et al.  Intracellular Positioning of Isoforms Explains an Unusually Large Adenylate Kinase Gene Family in the Parasite Trypanosoma brucei*[boxs] , 2005, Journal of Biological Chemistry.

[85]  Manal J. Natto,et al.  Trypanosoma brucei: expression of multiple purine transporters prevents the development of allopurinol resistance. , 2005, Experimental parasitology.

[86]  A. Nairn,et al.  Molecular characterization of recombinant mouse adenosine kinase and evaluation as a target for protein phosphorylation. , 2004, European journal of biochemistry.

[87]  M. Barrett,et al.  The Trypanocide Diminazene Aceturate Is Accumulated Predominantly through the TbAT1 Purine Transporter: Additional Insights on Diamidine Resistance in African Trypanosomes , 2004, Antimicrobial Agents and Chemotherapy.

[88]  K. Wilson,et al.  The crystal structure of Trypanosoma cruzi dUTPase reveals a novel dUTP/dUDP binding fold. , 2004, Structure.

[89]  Zefeng Wang,et al.  The Adenosine Analog Tubercidin Inhibits Glycolysis in Trypanosoma brucei as Revealed by an RNA Interference Library* , 2003, Journal of Biological Chemistry.

[90]  M. Barrett,et al.  Mechanisms of Arsenical and Diamidine Uptake and Resistance in Trypanosoma brucei , 2003, Eukaryotic Cell.

[91]  H. D. de Koning,et al.  Different Substrate Recognition Motifs of Human and Trypanosome Nucleobase Transporters , 2002, The Journal of Biological Chemistry.

[92]  A. Chabes,et al.  Trypanosoma brucei CTP synthetase: A target for the treatment of African sleeping sickness , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[93]  R. Krauth-Siegel,et al.  Trypanothione-dependent Synthesis of Deoxyribonucleotides by Trypanosoma brucei Ribonucleotide Reductase* , 2001, The Journal of Biological Chemistry.

[94]  H. D. de Koning,et al.  Adenosine transporters in bloodstream forms of Trypanosoma brucei brucei: substrate recognition motifs and affinity for trypanocidal drugs. , 1999, Molecular pharmacology.

[95]  R. Kaminsky,et al.  A nucleoside transporter from Trypanosoma brucei involved in drug resistance. , 1999, Science.

[96]  T. Aoki,et al.  Novel organization and sequences of five genes encoding all six enzymes for de novo pyrimidine biosynthesis in Trypanosoma cruzi. , 1999, Journal of molecular biology.

[97]  B. Emmerson,et al.  Purification and characterization of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase and comparison with the human enzyme. , 1999, Molecular and biochemical parasitology.

[98]  A. Hofer,et al.  Allosteric Regulation of Trypanosoma bruceiRibonucleotide Reductase Studied in Vitro and in Vivo * , 1998, The Journal of Biological Chemistry.

[99]  H. D. de Koning,et al.  Characterization of a Nucleoside/Proton Symporter in ProcyclicTrypanosoma brucei brucei * , 1998, The Journal of Biological Chemistry.

[100]  H. D. de Koning,et al.  Hypoxanthine uptake through a purine-selective nucleobase transporter in Trypanosoma brucei brucei procyclic cells is driven by protonmotive force. , 1997, European journal of biochemistry.

[101]  D. Parkin Purine-specific Nucleoside N-Ribohydrolase from Trypanosoma brucei brucei , 1996, The Journal of Biological Chemistry.

[102]  M. Go,et al.  Ancient divergence of long and short isoforms of adenylate kinase molecular evolution of the nucleoside monophosphate kinase family , 1996, FEBS letters.

[103]  A. Fairlamb,et al.  Uptake of Diamidine Drugs by the P2 Nucleoside Transporter in Melarsen-sensitive and -resistant Trypanosoma brucei brucei(*) , 1995, The Journal of Biological Chemistry.

[104]  T. Traut,et al.  Physiological concentrations of purines and pyrimidines , 1994, Molecular and Cellular Biochemistry.

[105]  A. Fairlamb,et al.  Arsenical-resistant trypanosomes lack an unusual adenosine transporter , 1993, Nature.

[106]  J L Stirling,et al.  Cloning and sequence analysis of a cDNA encoding the alpha-subunit of mouse beta-N-acetylhexosaminidase and comparison with the human enzyme. , 1992, The Biochemical journal.

[107]  A. Fairlamb,et al.  Trypanothione is the primary target for arsenical drugs against African trypanosomes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. F. Albright,et al.  The availability of purines influences both the number of parasites and the splenocyte levels of purine-metabolizing enzymes in trypanosome-infected mice , 1988, Infection and immunity.

[109]  P. McCann,et al.  Synergism between 9-deazainosine and DL-alpha-difluoromethylornithine in treatment of experimental African trypanosomiasis , 1987, Antimicrobial Agents and Chemotherapy.

[110]  A. Fairlamb,et al.  In vivo effects of difluoromethylornithine on trypanothione and polyamine levels in bloodstream forms of Trypanosoma brucei. , 1987, Molecular and biochemical parasitology.

[111]  D. Bhaumik,et al.  Isolation and characterization of adenosine kinase from Leishmania donovani. , 1987, The Journal of biological chemistry.

[112]  R. Isturiz,et al.  Chagas Disease , 2021, Neglected Tropical Diseases.

[113]  D. Nelson,et al.  Inosine analogs as chemotherapeutic agents for African trypanosomes: metabolism in trypanosomes and efficacy in tissue culture , 1985, Antimicrobial Agents and Chemotherapy.

[114]  D. Nelson,et al.  Monophosphates of formycin B and allopurinol riboside. Interactions with leishmanial and mammalian succino-AMP synthetase and GMP reductase. , 1984, Biochemical pharmacology.

[115]  S. Beverley,et al.  A bifunctional thymidylate synthetase-dihydrofolate reductase in protozoa. , 1984, Molecular and biochemical parasitology.

[116]  P. O. Ogbunude,et al.  Comparative aspects of purine metabolism in some African trypanosomes. , 1983, Molecular and biochemical parasitology.

[117]  R. Spector,et al.  Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma , 1983, Neurochemical Research.

[118]  R. Spector,et al.  Determination of ribonucleosides, deoxyribonucleosides, and purine and pyrimidine bases in adult rabbit cerebrospinal fluid and plasma , 1983, Neurochemical Research.

[119]  W. Gutteridge,et al.  UMP synthesis in the kinetoplastida. , 1982, Biochimica et biophysica acta.

[120]  M. Tattersall,et al.  The determination of purine levels in human and mouse plasma. , 1982, Analytical biochemistry.

[121]  R. L. Berens,et al.  Purine metabolism in Trypanosoma brucei gambiense. , 1982, Biochimica et biophysica acta.

[122]  D. Nelson,et al.  Purine metabolism in Leishmania donovani and Leishmania braziliensis. , 1978, Biochimica et biophysica acta.

[123]  A. E. Vidal,et al.  Depletion of dimeric all-alpha dUTPase induces DNA strand breaks and impairs cell cycle progression in Trypanosoma brucei. , 2008, The international journal of biochemistry & cell biology.

[124]  Y. Moriwaki,et al.  Plasma concentrations and urinary excretion of purine bases (uric acid, hypoxanthine, and xanthine) and oxypurinol after rigorous exercise. , 2006, Metabolism: clinical and experimental.

[125]  H. D. de Koning,et al.  Purine nucleobase transport in bloodstream forms of Trypanosoma brucei is mediated by two novel transporters. , 1997, Molecular and biochemical parasitology.

[126]  P. Marsden,et al.  Allopurinol treatment in human Leishmania braziliensis braziliensis infections. , 1984, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[127]  W. Gutteridge,et al.  A re-examination of purine and pyrimidine synthesis in the three main forms of Trypanosoma cruzi. , 1979, The International journal of biochemistry.

[128]  D. Zaharevitz,et al.  Enhancement of the biological activity of adenosine analogs by the adenosine deaminase inhibitor 2'-deoxycoformycin. , 1977, Pharmacology.