Magnetoresistive random access memory using magnetic tunnel junctions

Magnetoresistive random access memory (MRAM) technology combines a spintronic device with standard silicon-based microelectronics to obtain a combination of attributes not found in any other memory technology. Key attributes of MRAM technology are nonvolatility and unlimited read and write endurance. Magnetic tunnel junction (MTJ) devices have several advantages over other magnetoresistive devices for use in MRAM cells, such as a large signal for the read operation and a resistance that can be tailored to the circuit. Due to these attributes, MTJ MRAM can operate at high speed and is expected to have competitive densities when commercialized. In this paper, we review our recent progress in the development of MTJ-MRAM technology. We describe how the memory operates, including significant aspects of reading, writing, and integration of the magnetic material with CMOS, which enabled our recent demonstration of a 1-Mbit memory chip. Important memory attributes are compared between MRAM and other memory technologies.

[1]  Stephen E. Russek,et al.  High-speed characterization of submicrometer giant magnetoresistive devices , 1999 .

[2]  V. Soares,et al.  Large tunneling magnetoresistance enhancement by thermal anneal , 1998 .

[3]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[4]  M. Mentzer,et al.  Fabrication and characterization of a crosstie random access memory , 1982 .

[5]  Yu Lu,et al.  Memories of tomorrow , 2002 .

[6]  William J. Gallagher,et al.  Magnetization Reversal in Micron-Sized Magnetic Thin Films , 1998 .

[7]  Jian-Gang Zhu,et al.  Magnetization vortices and anomalous switching in patterned NiFeCo submicron arrays , 1999 .

[8]  Jijun Sun,et al.  Low resistance and high thermal stability of spin-dependent tunnel junctions with synthetic antiferromagnetic CoFe/Ru/CoFe pinned layers , 2000 .

[9]  Saied N. Tehrani,et al.  Magnetostatic interactions between sub-micrometer patterned magnetic elements , 2001 .

[10]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[11]  Jon M. Slaughter,et al.  Technology Status and Potential for High Speed Nonvolatile Magnetoresistive RAM , 2000 .

[12]  William J. Gallagher,et al.  Microstructured magnetic tunnel junctions (invited) , 1997 .

[13]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[14]  B. N. Engel,et al.  Fundamentals of MRAM Technology , 2002 .

[15]  Saied N. Tehrani,et al.  Edge-pinned states in patterned submicron NiFeCo structures , 2000 .

[16]  Robert E. Fontana,et al.  Low-field magnetoresistance in magnetic tunnel junctions prepared by contact masks and lithography: 25% magnetoresistance at 295 K in mega-ohm micron-sized junctions (abstract) , 1997 .

[17]  Saied N. Tehrani,et al.  Comparison of oxidation methods for magnetic tunnel junction material , 2000 .

[18]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[19]  Saied N. Tehrani,et al.  High density submicron magnetoresistive random access memory (invited) , 1999 .

[20]  W. Abdul-Razzaq,et al.  Galvanomagnetic properties of Ag/M (M Fe, Ni, Co) layered metallic films , 1988 .

[21]  Renard,et al.  Enhanced magnetoresistance of ultrathin (Au/Co)n multilayers with perpendicular anisotropy. , 1988, Physical review. B, Condensed matter.

[22]  H. Goronkin,et al.  High density nonvolatile magnetoresistive RAM , 1996, International Electron Devices Meeting. Technical Digest.

[23]  Etienne Snoeck,et al.  Low-resistance spin-dependent tunnel junctions with ZrAlOx barriers , 2001 .

[24]  Jagadeesh S. Moodera,et al.  Ferromagnetic-insulator-ferromagnetic tunneling: Spin-dependent tunneling and large magnetoresistance in trilayer junctions (invited) , 1996 .

[25]  Saied N. Tehrani,et al.  Thermally activated magnetization reversal in submicron magnetic tunnel junctions for magnetoresistive random access memory , 2002 .

[26]  Jon M. Slaughter,et al.  The science and technology of magnetoresistive tunneling memory , 2002 .

[27]  J. Daughton Magnetoresistive memory technology , 1992 .

[28]  Saied N. Tehrani,et al.  Recent developments in magnetic tunnel junction MRAM , 2000 .

[29]  M. Durlam,et al.  A 256 kb 3.0 V 1T1MTJ nonvolatile magnetoresistive RAM , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[30]  Jian-Gang Zhu,et al.  End Domain States and Magnetization Reversal in Submicron Magnetic Structures , 1998, 7th Joint MMM-Intermag Conference. Abstracts (Cat. No.98CH36275).

[31]  William J. Gallagher,et al.  Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited) , 1999 .

[32]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[33]  R. Scheuerlein,et al.  A 10 ns read and write non-volatile memory array using a magnetic tunnel junction and FET switch in each cell , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[34]  M. Johnson Magnetoelectronic memories last and last , 2000 .

[35]  Saied N. Tehrani,et al.  Geometry dependence of magnetization vortices in patterned submicron NiFe elements , 2000 .

[36]  D. R. Krahn,et al.  The design of a one megabit non-volatile M-R memory chip using 1.5*5 mu m cells , 1988 .

[37]  Albert Fert,et al.  Inverse Tunnel Magnetoresistance in Co / SrTiO 3 / La 0.7 Sr 0.3 MnO 3 : New Ideas on Spin-Polarized Tunneling , 1999 .

[38]  Frank Wang Diode-free magnetic random access memory using spin-dependent tunneling effect , 2000 .

[39]  L. J. Schwee,et al.  The concept and initial studies of a crosstie random access memory (CRAM) , 1982 .

[40]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[41]  J. Slaughter,et al.  Progress and outlook for MRAM technology , 1999, IEEE International Magnetics Conference.