Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold

[1]  T. Hackl,et al.  Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments , 2018, Scientific Data.

[2]  Johannes Söding,et al.  Clustering huge protein sequence sets in linear time , 2017, Nature Communications.

[3]  P. Bork,et al.  A global ocean atlas of eukaryotic genes , 2018, Nature Communications.

[4]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[5]  O. Reva,et al.  Assembling metagenomes, one community at a time , 2017, BMC Genomics.

[6]  Philip D. Blood,et al.  Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software , 2017, Nature Methods.

[7]  Tom O. Delmont,et al.  Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics , 2017, Microbiome.

[8]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[9]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[10]  John Vollmers,et al.  Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist’s Perspective - Not Only Size Matters! , 2017, PloS one.

[11]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[12]  Maria Jesus Martin,et al.  Uniclust databases of clustered and deeply annotated protein sequences and alignments , 2016, Nucleic Acids Res..

[13]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[14]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[15]  Martin C. Frith,et al.  ALP & FALP: C++ libraries for pairwise local alignment E-values , 2015, Bioinform..

[16]  Jun Wang,et al.  Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota , 2015, Nature.

[17]  T. R. Licht,et al.  A catalog of the mouse gut metagenome , 2015, Nature Biotechnology.

[18]  Shibu Yooseph,et al.  SFA-SPA: a suffix array based short peptide assembler for metagenomic data , 2015, Bioinform..

[19]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[20]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[21]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[22]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[23]  N. Kashtan,et al.  Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild Prochlorococcus , 2014, Science.

[24]  S. Tringe,et al.  Tackling soil diversity with the assembly of large, complex metagenomes , 2014, Proceedings of the National Academy of Sciences.

[25]  Jens Roat Kultima,et al.  Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota , 2015, Nature.

[26]  Jean-Michel Claverie,et al.  Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes , 2013, The ISME Journal.

[27]  Steven Salzberg,et al.  BIOINFORMATICS ORIGINAL PAPER , 2004 .

[28]  M. Frith A new repeat-masking method enables specific detection of homologous sequences , 2010, Nucleic acids research.

[29]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[30]  Haixu Tang,et al.  An Orfome Assembly Approach to Metagenomics Sequences Analysis , 2009, J. Bioinform. Comput. Biol..

[31]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[32]  J. Skolnick,et al.  How well is enzyme function conserved as a function of pairwise sequence identity? , 2003, Journal of molecular biology.