Chiral metal down to 4.2 K - a BDH-TTP radical-cation salt with spiroboronate anion B(2-chloromandelate)2.

We report the first example of a chiral BDH-TTP radical-cation salt. Chirality is induced in the structure via the use of a chiral spiroboronate anion where three stereocentres are present, one on each chiral ligand and one on the boron centre. Despite starting from a labile racemic mixture of BS and BR enantiomers, only one enantiomer is present in the crystal lattice. The anions pack in a novel double anion layer which is the thickest anion layer found in a BDH-TTP salt. This material is chiral and shows metallic behaviour down to at least 4.2 K.

[1]  N. Avarvari,et al.  In Search of Chiral Molecular Superconductors: κ‐[(S,S)‐DM‐BEDT‐TTF]2ClO4 Revisited , 2020, Advanced materials.

[2]  J. Wallis,et al.  Chiral molecular conductor with an insulator-metal transition close to room temperature. , 2020, Chemical communications.

[3]  N. Avarvari,et al.  Combining Chirality and Hydrogen Bonding in Methylated Ethylenedithio-Tetrathiafulvalene Primary Diamide Precursors and Radical Cation Salts , 2020 .

[4]  N. Avarvari,et al.  Chiral EDT-TTF precursors with one stereogenic centre: substituent size modulation of the conducting properties in the (R-EDT-TTF)2PF6 (R = Me or Et) series , 2019, Journal of Materials Chemistry C.

[5]  N. Avarvari,et al.  Main-Group-Based Electro- and Photoactive Chiral Materials. , 2019, Chemical reviews.

[6]  N. Nagaosa,et al.  Nonreciprocal charge transport in noncentrosymmetric superconductors , 2017, Science Advances.

[7]  R. Tenne,et al.  Superconductivity in a chiral nanotube , 2017, Nature Communications.

[8]  N. Avarvari,et al.  Anion size control of the packing in the metallic versus semiconducting chiral radical cation salts (DM-EDT-TTF)2XF6 (X = P, As, Sb). , 2016, Chemical communications.

[9]  S. Coles,et al.  Enantiopure and racemic radical-cation salts of B(malate)2(-) anions with BEDT-TTF. , 2016, Dalton transactions.

[10]  J. Yamada,et al.  New Family of Six Stable Metals with a Nearly Isotropic Triangular Lattice of Organic Radical Cations and Diluted Paramagnetic System of Anions: κ(κ⊥)-(BDH-TTP)4MX4·Solv, where M = CoII, MnII; X = Cl, Br, and Solv = (H2O)5, (CH2X2) , 2016 .

[11]  Ian D. Williams,et al.  Bis(mandelato)borate: an effective, inexpensive spiroborate anion for chiral resolution. , 2015, Chemical communications.

[12]  M. Hursthouse,et al.  Chiral Radical-Cation Salts of BEDT-TTF Containing a Single Enantiomer of Tris(oxalato)aluminate(III) and -chromate(III) , 2015 .

[13]  M. Hursthouse,et al.  Chirality in charge-transfer salts of BEDT-TTF of tris(oxalato)chromate(III) , 2015 .

[14]  N. Avarvari,et al.  Electrical magnetochiral anisotropy in a bulk chiral molecular conductor , 2014, Nature Communications.

[15]  N. Avarvari,et al.  Charge transfer complexes and radical cation salts of chiral methylated organosulfur donors , 2014 .

[16]  N. Avarvari,et al.  Tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) revisited: crystal structures, chiroptical properties, theoretical calculations, and a complete series of conducting radical cation salts. , 2013, Chirality.

[17]  Takehiko Mori,et al.  Crystal Structure and Physical Properties of π–d System κ-(BDH-TTP)2FeBr4 , 2013 .

[18]  M. Pilkington,et al.  New chiral organosulfur donors related to bis(ethylenedithio)tetrathiafulvalene , 2010 .

[19]  E. Coronado,et al.  A chiral ferromagnetic molecular metal. , 2010, Journal of the American Chemical Society.

[20]  N. Avarvari,et al.  Strategies towards chiral molecular conductors , 2009 .

[21]  E. Coronado,et al.  Unusual packing of ET molecules caused by π–π stacking interactions with TRISPHAT molecules in two [ET][TRISPHAT] salts (ET = bis(ethylenedithio)tetrathiafulvalene, TRISPHAT = (tris(tetrachlorobenzenediolato)phosphate(V))) , 2007 .

[22]  R. Shibaeva,et al.  The first BDH-TTP radical cation salts with mercuric counterions, κ-(BDH-TTP)4[Hg(SCN)4]·C6H5NO2 and α′-(BDH-TTP)6[Hg(SCN)3][Hg(SCN)4] , 2005 .

[23]  E. Coronado,et al.  A chiral molecular conductor: synthesis, structure, and physical properties of [ET]3[Sb2(L-tart)2].CH3CN (ET = bis(ethylendithio)tetrathiafulvalene; L-tart = (2R,3R)-(+)-tartrate). , 2004, Inorganic chemistry.

[24]  K. Kikuchi,et al.  New trends in the synthesis of pi-electron donors for molecular conductors and superconductors. , 2004, Chemical reviews.

[25]  R. Shibaeva,et al.  New Organic Metals Based on BDH‐TTP Radical Cation Salts with the Photochromic Nitroprusside Anion [FeNO(CN)5]2– , 2004 .

[26]  S. Roth,et al.  Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes , 2002 .

[27]  G. Rikken,et al.  Magneto-chiral anisotropy of the free electron on a helix , 2002 .

[28]  P. Wyder,et al.  Electrical magnetochiral anisotropy. , 2001, Physical review letters.

[29]  Takehiko Mori Structural Genealogy of BEDT-TTF-Based Organic Conductors I. Parallel Molecules: .BETA. and .BETA." Phases. , 1998 .

[30]  H. Kuroda,et al.  Reflectance Spectra of κ-(BEDT-TTF)2I3:Electronic Structure of Dimeric BEDT-TTF Salts , 1991 .