Insecticide Resistance Mechanisms in the Green Peach Aphid Myzus persicae (Hemiptera: Aphididae) I: A Transcriptomic Survey

Background Insecticide resistance is one of the best examples of rapid micro-evolution found in nature. Since the development of the first synthetic insecticide in 1939, humans have invested considerable effort to stay ahead of resistance phenotypes that repeatedly develop in insects. Aphids are a group of insects that have become global pests in agriculture and frequently exhibit insecticide resistance. The green peach aphid, Myzus persicae, has developed resistance to at least seventy different synthetic compounds, and different insecticide resistance mechanisms have been reported worldwide. Methodology/Principal Findings To further characterize this resistance, we analyzed genome-wide transcriptional responses in three genotypes of M. persicae, each exhibiting different resistance mechanisms, in response to an anti-cholinesterase insecticide. The sensitive genotype (exhibiting no resistance mechanism) responded to the insecticide by up-regulating 183 genes primarily ones related to energy metabolism, detoxifying enzymes, proteins of extracellular transport, peptidases and cuticular proteins. The second genotype (resistant through a kdr sodium channel mutation), up-regulated 17 genes coding for detoxifying enzymes, peptidase and cuticular proteins. Finally, a multiply resistant genotype (carrying kdr and a modified acetylcholinesterase), up-regulated only 7 genes, appears not to require induced insecticide detoxification, and instead down-regulated many genes. Conclusions/Significance This study suggests strongly that insecticide resistance in M. persicae is more complex that has been described, with the participation of a broad array of resistance mechanisms. The sensitive genotype exhibited the highest transcriptional plasticity, accounting for the wide range of potential adaptations to insecticides that this species can evolve. In contrast, the multiply resistant genotype exhibited a low transcriptional plasticity, even for the expression of genes encoding enzymes involved in insecticide detoxification. Our results emphasize the value of microarray studies to search for regulated genes in insects, but also highlights the many ways those different genotypes can assemble resistant phenotypes depending on the environmental pressure.

[1]  R. Guedes,et al.  Altered cysteine proteinase activity in insecticide-resistant strains of the maize weevil: purification and characterization. , 2010, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[2]  L. McIntyre,et al.  Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Nespolo,et al.  Evolution of Trade-Offs between Sexual and Asexual Phases and the Role of Reproductive Plasticity in the Genetic Architecture of Aphid Life Histories , 2009, Evolution; international journal of organic evolution.

[4]  J Hemingway,et al.  Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. , 2001, The Biochemical journal.

[5]  R. Feyereisen,et al.  Cytochrome P450 monooxygenases and insecticide resistance in insects. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  M. Schuler P450s in plant-insect interactions. , 2011, Biochimica et biophysica acta.

[7]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[8]  Cristina Cattaneo,et al.  Introduction to genomics. , 2012, Methods in molecular biology.

[9]  J. A. Mckenzie,et al.  The genetic, molecular and phenotypic consequences of selection for insecticide resistance. , 1994, Trends in ecology & evolution.

[10]  A. Ishikawa,et al.  Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs , 2010, Insect molecular biology.

[11]  L. Field,et al.  Metabolic enzyme(s) confer imidacloprid resistance in a clone of Myzus persicae (Sulzer) (Hemiptera: Aphididae) from Greece. , 2010, Pest management science.

[12]  D. Mantle,et al.  Comparison of proteolytic enzyme activities in adults of insecticide resistant and susceptible strains of the housefly M. domestica L. , 1998, Insect biochemistry and molecular biology.

[13]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[14]  J. A. Mckenzie,et al.  Predicting insecticide resistance: mutagenesis, selection and response. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  N. Price,et al.  The uptake and penetration of pirimiphos-methyl into susceptible and resistant strains of the rust red flour beetle—Tribolium castaneum, herbst (coleoptera: tenebrionidae) , 1989 .

[16]  L. M. Schoonhoven,et al.  Insect-plant biology , 1998 .

[17]  G. Mazzucchelli,et al.  Proteomics in Myzus persicae: effect of aphid host plant switch. , 2006, Insect biochemistry and molecular biology.

[18]  M. Seagraves Aphids as Crop Pests , 2009 .

[19]  M. Williamson,et al.  New methods for the detection of insecticide resistant Myzus persicae in the U.K. suction trap network , 2008 .

[20]  J. Bonnet,et al.  Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies) , 2009, BMC Genomics.

[21]  A. Devonshire,et al.  Structure and organization of amplicons containing the E4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer). , 1997, The Biochemical journal.

[22]  F C Kafatos,et al.  Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure , 2005, Insect molecular biology.

[23]  A. Tondelli,et al.  Biochemical and molecular diagnosis of insecticide resistance conferred by esterase, MACE, kdr and super-kdr based mechanisms in Italian strains of the peach potato aphid, Myzus persicae (Sulzer) , 2008 .

[24]  A. Wilson,et al.  Heritable genetic variation and potential for adaptive evolution in asexual aphids (Aphidoidea) , 2003 .

[25]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[26]  Ernest Hodgson,et al.  In vitro human phase I metabolism of xenobiotics I: Pesticides and related compounds used in agriculture and public health, may 2003 , 2003, Journal of biochemical and molecular toxicology.

[27]  H. Ranson,et al.  Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana , 2007, BMC Genomics.

[28]  R. ffrench-Constant,et al.  A Single P450 Allele Associated with Insecticide Resistance in Drosophila , 2002, Science.

[29]  H. Herzel,et al.  Inferring combinatorial regulation of transcription in silico , 2005, Nucleic acids research.

[30]  M. Kenward,et al.  Comparative survival of insecticide-susceptible and resistant peach-potato aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in low temperature field trials , 1996 .

[31]  J. Oakeshott,et al.  The genomics of insecticide resistance , 2003, Genome Biology.

[32]  H. Niemeyer,et al.  Genetic diversity and insecticide resistance of Myzus persicae (Hemiptera: Aphididae) populations from tobacco in Chile: evidence for the existence of a single predominant clone , 2004, Bulletin of Entomological Research.

[33]  G. Smagghe,et al.  Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. , 2002, Archives of insect biochemistry and physiology.

[34]  M. Mugglestone,et al.  Evidence for a possible fitness trade-off between insecticide resistance and the low temperature movement that is essential for survival of UK populations of Myzus persicae (Hemiptera: Aphididae) , 1997 .

[35]  J. Hemingway,et al.  Genomic analysis of detoxification genes in the mosquito Aedes aegypti. , 2008, Insect biochemistry and molecular biology.

[36]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[37]  S. Foster,et al.  Amplification of a Cytochrome P450 Gene Is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae , 2010, PLoS genetics.

[38]  Sharda P. Singh,et al.  Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. , 2001, European journal of biochemistry.

[39]  L. Field Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). , 2000, The Biochemical journal.

[40]  E. Kirkness,et al.  Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism , 2010, Insect molecular biology.

[41]  R. Feyereisen Insect P450 enzymes. , 1999, Annual review of entomology.

[42]  T. Lenormand,et al.  Tracking the evolution of insecticide resistance in the mosquito Culex pipiens , 1999, Nature.

[43]  S. Foster,et al.  Amplification of a Cytochrome P 450 Gene Is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae , 2022 .

[44]  May R Berenbaum,et al.  Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. , 2007, Annual review of entomology.

[45]  Simon J. Yu The Toxicology and Biochemistry of Insecticides , 2008 .

[46]  B. Sabater-Muñoz,et al.  Annotated expressed sequence tags and xenobiotic detoxification in the aphid Myzus persicae (Sulzer) , 2007 .

[47]  A. Nazir,et al.  Chlorpyrifos-Induced hsp70 Expression and Effect on Reproductive Performance in Transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 , 2001, Archives of environmental contamination and toxicology.

[48]  R. ffrench-Constant,et al.  Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae , 1998, Molecular and General Genetics MGG.

[49]  D. K. Saxena,et al.  Effect of Hexachlorocyclohexane (HCH), Its Isomers, and Metabolites on Hsp70 Expression in TransgenicDrosophila melanogaster☆☆☆★ , 1999 .

[50]  J. Hemingway,et al.  Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross‐species microarray hybridization , 2007, Insect molecular biology.

[51]  Michael Weisman,et al.  Association of Variants at 1q32 and STAT3 with Ankylosing Spondylitis Suggests Genetic Overlap with Crohn's Disease , 2010, PLoS genetics.

[52]  E. Dassa,et al.  The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. , 2001, Research in microbiology.

[53]  Cecilia Tamborindeguy,et al.  Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design , 2007, BMC Genomics.

[54]  P. Rongnoparut,et al.  Transcription Analysis of Differentially Expressed Genes in Insecticide-Resistant Aedes aegypti Mosquitoes After Deltamethrin Exposure , 2010, Journal of vector ecology : journal of the Society for Vector Ecology.

[55]  S. Hawkins,et al.  Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.) , 2010, BMC Plant Biology.

[56]  Terry Speed,et al.  Normalization of cDNA microarray data. , 2003, Methods.

[57]  Zibiao Guo,et al.  Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). , 2011, Journal of invertebrate pathology.

[58]  R. Nauen,et al.  European monitoring of resistance to insecticides in Myzus persicae and Aphis gossypii (Hemiptera: Aphididae) with special reference to imidacloprid , 2003, Bulletin of Entomological Research.

[59]  Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource , 2003 .

[60]  A. Agrawal,et al.  Re-evaluating the costs and limits of adaptive phenotypic plasticity , 2010, Proceedings of the Royal Society B: Biological Sciences.

[61]  A. Devonshire,et al.  A fluorometric method to detect insensitive acetylcholinesterase in resistant pests. , 2000 .

[62]  T. Nabeshima,et al.  An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. , 2003, Biochemical and biophysical research communications.

[63]  A. Devonshire,et al.  Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. , 1988, The Biochemical journal.

[64]  A. Enayati,et al.  Insect glutathione transferases and insecticide resistance , 2005, Insect molecular biology.

[65]  S. Foster,et al.  Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) , 2007, Bulletin of Entomological Research.

[66]  K. Dong,et al.  Mechanisms responsible for cypermethrin resistance in a strain of German cockroach, Blattella germanica , 2000 .

[67]  J. Gaddum Probit Analysis , 1948, Nature.

[68]  M. Sogorb,et al.  Detoxication of Anticholinesterase Pesticides , 2011 .

[69]  M. Sauge,et al.  Incidence of insecticide resistance alleles in sexually-reproducing populations of the peach-potato aphid Myzus persicae (Hemiptera: Aphididae) from southern France. , 2003, Bulletin of entomological research.

[70]  D. Roff,et al.  Evolutionary Ecology: Concepts and Case Studies , 2001 .

[71]  A. Devonshire,et al.  A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae) , 1982 .

[72]  Melissa C. Hardstone,et al.  Multiplicative interaction between the two major mechanisms of permethrin resistance, kdr and cytochrome P450‐monooxygenase detoxification, in mosquitoes , 2009, Journal of evolutionary biology.

[73]  A. Devonshire,et al.  Insecticide-insensitive acetylcholinesterase can enhance esterase-based resistance in Myzus persicae and Myzus nicotianae , 1994 .

[74]  C. Potter AN IMPROVED LABORATORY APPARATUS FOR APPLYING DIRECT SPRAYS AND SURFACE FILMS, WITH DATA ON THE ELECTROSTATIC CHARGE ON ATOMIZED SPRAY FLUIDS , 1952 .

[75]  R. ffrench-Constant,et al.  The genetics and genomics of insecticide resistance. , 2004, Trends in genetics : TIG.

[76]  E. Hodgson,et al.  In vitro human metabolism of permethrin: the role of human alcohol and aldehyde dehydrogenases , 2002 .

[77]  B. Roe,et al.  Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae , 2010, Insect molecular biology.

[78]  M. Whalon,et al.  Global Pesticide Resistance in Arthropods , 2008 .

[79]  C. Tyler-Smith,et al.  Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). , 1999, The Biochemical journal.

[80]  Ian Denholm,et al.  Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan. , 2006, Pest management science.

[81]  U. Steiner,et al.  The fitness costs of developmental canalization and plasticity , 2009, Journal of evolutionary biology.

[82]  Claus Lindbjerg Andersen,et al.  Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets , 2004, Cancer Research.

[83]  W. Muir,et al.  Profiling of abundant proteins associated with dichlorodiphenyltrichloroethane resistance in Drosophila melanogaster , 2005, Proteomics.

[84]  Nils Blüthgen,et al.  Biological profiling of gene groups utilizing Gene Ontology. , 2004, Genome informatics. International Conference on Genome Informatics.

[85]  Andrew J. Crossthwaite,et al.  Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae , 2011, BMC Neuroscience.

[86]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[87]  L. Field,et al.  Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages , 2003 .

[88]  Cunshuan Xu,et al.  Reference Gene Selection for Real-Time RT-PCR in Eight Kinds of Rat Regenerating Hepatic Cells , 2010, Molecular biotechnology.

[89]  R. Guedes,et al.  Cost and mitigation of insecticide resistance in the maize weevil, Sitophilus zeamais , 2006 .

[90]  Á. Lagunes-Tejeda,et al.  The occurrence of resistance to pesticides in arthropods , 1981 .

[91]  P. Somboon,et al.  Enzymes-based resistant mechanism in pyrethroid resistant and susceptible Aedes aegypti strains from northern Thailand , 2011, Parasitology Research.

[92]  Subash C. Gupta,et al.  Heat shock proteins in toxicology: how close and how far? , 2010, Life sciences.

[93]  D. Waterhouse,et al.  The Distribution and Importance of Arthropods Associated with Agriculture and Forestry in Chile , 2000 .

[94]  D. Heckel,et al.  An ABC Transporter Mutation Is Correlated with Insect Resistance to Bacillus thuringiensis Cry1Ac Toxin , 2010, PLoS genetics.

[95]  A. Devonshire,et al.  A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach‐potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) , 1999, Insect molecular biology.

[96]  M. Williamson,et al.  High-throughput detection of knockdown resistance in Myzus persicae using allelic discriminating quantitative PCR. , 2004, Insect biochemistry and molecular biology.

[97]  Y. Pelletier,et al.  Environmental stresses induce the expression of putative glycine‐rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say) , 2008, Insect molecular biology.

[98]  Andrea X. Silva,et al.  Evaluating reproductive fitness and metabolic costs for insecticide resistance in Myzus persicae from Chile , 2011 .

[99]  A. Devonshire,et al.  Molecular studies of knockdown resistance to pyrethroids: cloning of domain II sodium channel gene sequences from insects , 1997 .

[100]  R. Guedes,et al.  Modified alpha-amylase activity among insecticide-resistant and -susceptible strains of the maize weevil, Sitophilus zeamais. , 2010, Journal of insect physiology.

[101]  R. Feyereisen,et al.  Molecular biology of insecticide resistance. , 1995, Toxicology letters.

[102]  A. Devonshire,et al.  Comparison of microplate esterase assays and immunoassay for identifying insecticide resistant variants of Myzus persicae (Homoptera: Aphididae) , 1992 .

[103]  Janet Hemingway,et al.  The molecular basis of insecticide resistance in mosquitoes. , 2004, Insect biochemistry and molecular biology.

[104]  S. Foster,et al.  Fitness trade-off in peach-potato aphids (Myzus persicae) between insecticide resistance and vulnerability to parasitoid attack at several spatial scales , 2010, Bulletin of Entomological Research.

[105]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[106]  A. Devonshire,et al.  Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). , 1993, The Biochemical journal.

[107]  J. Bloomquist,et al.  Monitoring for MACE resistance in the tobacco-adapted form of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in the eastern United States , 2010 .

[108]  A. Devonshire,et al.  Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. , 1998, The Biochemical journal.

[109]  R. L. Blackman,et al.  Aphids on the World's Crops: An Identification and Information Guide , 1984 .

[110]  John G. Oakeshott,et al.  Caboxylesterases in the metabolism and toxicity of pesticides , 2011 .