Magnetic Molecular Conductors Based on Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and the Tris(chlorocyananilato)ferrate(III) Complex.

Electrocrystallization of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) organic donor in the presence of the [Fe(ClCNAn)3]3- tris(chlorocyananilato)ferrate(III) paramagnetic anion in different stoichiometric ratios and solvent mixtures afforded two different hybrid systems formulated as [BEDT-TTF]4[Fe(ClCNAn)3]·3H2O (1) and [BEDT-TTF]5[Fe(ClCNAn)3]2·2CH3CN (2) (An = anilato). Compounds 1 and 2 present unusual structures without the typical segregated organic and inorganic layers, where layers of 1 are formed by Λ and Δ enantiomers of the anionic paramagnetic complex together with mixed-valence BEDT-TTF tetramers, while layers of 2 are formed by Λ and Δ enantiomers of the paramagnetic complex together with dicationic BEDT-TTF dimers and monomers. Compounds 1 and 2 show semiconducting behaviors with room-temperature conductivities of ca. 6 × 10-3 S cm-1 (ambient pressure) and 1 × 10-3 S cm-1 (under applied pressure of 12.1 GPa), respectively, due to strong dimerization between the donors. Magnetic measurements performed on compound 1 indicate weak antiferromagnetic coupling between high-spin FeIII (SFe = 5/2) and mixed-valence radical cation diyads (BEDT-TTF)2+ (Srad = 1/2) mediated by the anilate ligands, together with an important Pauli paramagnetism typical for conducting systems.

[1]  M. Yamashita,et al.  Dysprosium Chlorocyanoanilate-Based 2D-Layered Coordination Polymers. , 2019, Inorganic chemistry.

[2]  E. Canadell,et al.  2D Molecular Superconductor to Insulator Transition in the β''-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3]·18-crown-6 Series (M = Rh, Cr, Ru, Ir). , 2019, Inorganic chemistry.

[3]  N. Avarvari,et al.  Main-Group-Based Electro- and Photoactive Chiral Materials. , 2019, Chemical reviews.

[4]  C. Gómez‐García,et al.  Two Dimensional Magnetic Coordination Polymers Formed by Lanthanoids and Chlorocyananilato , 2018, Magnetochemistry.

[5]  Lee Martin Molecular conductors of BEDT-TTF with tris(oxalato)metallate anions , 2018, Coordination Chemistry Reviews.

[6]  N. Avarvari,et al.  Conducting Anilate-Based Mixed-Valence Fe(II)Fe(III) Coordination Polymer: Small-Polaron Hopping Model for Oxalate-Type Fe(II)Fe(III) 2D Networks. , 2018, Journal of the American Chemical Society.

[7]  N. Avarvari,et al.  Nanosheets of Two-Dimensional Neutral Coordination Polymers Based on Near-Infrared-Emitting Lanthanides and a Chlorocyananilate Ligand , 2018, Chemistry of Materials.

[8]  A. Cantarero,et al.  Tuning the Structure and Properties of Lanthanoid Coordination Polymers with an Asymmetric Anilato Ligand , 2018 .

[9]  Y. Nakazawa,et al.  Bulk Kosterlitz-Thouless Type Molecular Superconductor β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6. , 2017, Inorganic chemistry.

[10]  S. Benmansour,et al.  Solvent-modulated structures in anilato-based 2D coordination polymers , 2017 .

[11]  N. Avarvari,et al.  Synthesis and Physical Properties of Purely Organic BEDT-TTF-Based Conductors Containing Hetero-/Homosubstituted Cl/CN-Anilate Derivatives. , 2017, Inorganic chemistry.

[12]  C. Gómez‐García,et al.  Nanosheets of Two-Dimensional Magnetic and Conducting Fe(II)/Fe(III) Mixed-Valence Metal-Organic Frameworks. , 2017, ACS applied materials & interfaces.

[13]  Bin Zhang,et al.  Molecular conductors from bis(ethylenedithio)tetrathiafulvalene with tris(oxalato)rhodate. , 2017, Dalton transactions.

[14]  M. Almeida Magnetism of Molecular Conductors , 2017 .

[15]  F. Congiu,et al.  Recent Advances on Anilato-Based Molecular Materials with Magnetic and/or Conducting Properties , 2017 .

[16]  Y. Nakazawa,et al.  Ambient-pressure molecular superconductor with a superlattice containing layers of tris(oxalato)rhodate enantiomers and 18-crown-6. , 2017, Inorganic chemistry.

[17]  A. Caneschi,et al.  Switching-on luminescence in anilate-based molecular materials. , 2015, Dalton transactions.

[18]  G. Mínguez Espallargas,et al.  2D and 3D Anilato-Based Heterometallic M(I)M(III) Lattices: The Missing Link. , 2015, Inorganic chemistry.

[19]  N. Avarvari,et al.  Complete series of chiral paramagnetic molecular conductors based on tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) and Chloranilate-bridged heterobimetallic honeycomb layers. , 2015, Inorganic chemistry.

[20]  E. Coronado,et al.  One-dimensional and two-dimensional anilate-based magnets with inserted spin-crossover complexes. , 2014, Inorganic chemistry.

[21]  P. Deplano,et al.  Hydrogen-Bonded Supramolecular Architectures Based on Tris(Hydranilato)Metallate(III) (M = Fe, Cr) Metallotectons , 2014 .

[22]  E. Coronado,et al.  Metallic Charge‐Transfer Salts of Bis(ethylenedithio)tetrathiafulvalene with Paramagnetic Tetrachloro(oxalato)rhenate(IV) and Tris(chloranilato)ferrate(III) Anions , 2014 .

[23]  F. Artizzu,et al.  Structural diversity and physical properties of paramagnetic molecular conductors based on bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and the tris(chloranilato)ferrate(III) complex. , 2014, Inorganic chemistry.

[24]  N. Avarvari,et al.  Electrical magnetochiral anisotropy in a bulk chiral molecular conductor , 2014, Nature Communications.

[25]  N. Avarvari,et al.  Charge transfer complexes and radical cation salts of chiral methylated organosulfur donors , 2014 .

[26]  F. Artizzu,et al.  Halogen-bonding in a new family of tris(haloanilato)metallate(III) magnetic molecular building blocks. , 2014, Dalton transactions.

[27]  F. Artizzu,et al.  A family of layered chiral porous magnets exhibiting tunable ordering temperatures. , 2013, Inorganic chemistry.

[28]  N. Avarvari,et al.  Tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) revisited: crystal structures, chiroptical properties, theoretical calculations, and a complete series of conducting radical cation salts. , 2013, Chirality.

[29]  M. Yamashita,et al.  New BDH-TTP/[M(III)(C5O5)3]3- (M = Fe, Ga) isostructural molecular metals. , 2013, Inorganic chemistry.

[30]  F. Artizzu,et al.  Multifunctional materials of interest in molecular electronics , 2013 .

[31]  E. Coronado,et al.  Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. , 2011, Chemical Society reviews.

[32]  N. Avarvari,et al.  Tetrathiafulvalene-based group XV ligands : Synthesis, coordination chemistry and radical cation salts , 2009 .

[33]  Paul F. McMillan,et al.  Multi-layered molecular charge-transfer salts containing alkali metal ions , 2007 .

[34]  P. Deplano,et al.  A chirality-induced alpha phase and a novel molecular magnetic metal in the BEDT-TTF/tris(croconate)ferrate(III) hybrid molecular system. , 2006, Chemical communications.

[35]  E. Coronado,et al.  New magnetic conductors and superconductors based on BEDT-TTF and BEDS-TTF , 2005 .

[36]  E. Coronado,et al.  Recent advances in polyoxometalate-containing molecular conductors , 2005 .

[37]  E. Coronado,et al.  A novel paramagnetic molecular superconductor formed by bis(ethylenedithio)tetrathiafulvalene, tris(oxalato)ferrate(III) anions and bromobenzene as guest molecule: ET4[(H3O)Fe(C2O4)3]??C6H5Br , 2005 .

[38]  T. Enoki,et al.  Magnetic TTF-based charge-transfer complexes. , 2004, Chemical reviews.

[39]  A. Kobayashi,et al.  Organic metals and superconductors based on BETS (BETS = bis(ethylenedithio)tetraselenafulvalene). , 2004, Chemical reviews.

[40]  R. Shibaeva,et al.  Molecular Metals Based on BEDT‐TTF Radical Cation Salts with Magnetic Metal Oxalates as Counterions: β″‐(BEDT‐TTF)4A[M(C2O4)3]·DMF (A = NH4+, K+; M = CrIII, FeIII) , 2003 .

[41]  V. Laukhin,et al.  Effect of included guest molecules on the normal state conductivity and superconductivity of beta''-(ET)(4)[(H(3)O)Ga(C(2)O(4))(3)].G (G = pyridine, nitrobenzene). , 2002, Journal of the American Chemical Society.

[42]  M. Tokumoto,et al.  Magnetic-field-induced superconductivity in a two-dimensional organic conductor , 2001, Nature.

[43]  D. Hibbs,et al.  Crystal chemistry and physical properties of superconducting and semiconducting charge transfer salts of the type (BEDT-TTF)(4)[A(I)M(III)(C2O4)3]*PhCN (A(I) = H30,NH4,K; M(III) = Cr, Fe, Co, Al; BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene. , 2001, Inorganic chemistry.

[44]  M. Tokumoto,et al.  A Novel Antiferromagnetic Organic Superconductor κ-(BETS)2FeBr4 [Where BETS = Bis(ethylenedithio)tetraselenafulvalene] , 2001 .

[45]  J. Howard,et al.  New superconducting charge-transfer salts (BEDT-TTF)4[A·M(C2O4)3]·C6H5NO2 (A = H3O or NH4, M = Cr or Fe, BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) , 2001 .

[46]  V. Laukhin,et al.  Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound , 2000, Nature.

[47]  C. J. Kepert,et al.  Determining the charge distribution in BEDT-TTF salts , 1997 .

[48]  E. McInnes,et al.  New molecular superconductor containing paramagnetic chromium(iii)ions , 1997 .

[49]  S. Coles,et al.  Superconducting and Semiconducting Magnetic Charge Transfer Salts: (BEDT-TTF)4AFe(C2O4)3.cntdot.C6H5CN (A = H2O, K, NH4) , 1995 .

[50]  M. Kurmoo,et al.  β″-(bedt-ttf)4[(H2O)Fe(C2O4)3]·PhCN: the first molecular superconductor containing paramagnetic metal ions , 1995 .

[51]  A. Pénicaud,et al.  Hydrogen-bond tuning of macroscopic transport properties from the neutral molecular component site along the sries of metallic organic-inorganic solvates (BEDT-TTF)4Re6Se5Cl9.[guest], [guest = DMF, THF, dioxane] , 1993 .

[52]  R. Friend,et al.  Structure and properties of tris[bis(ethylenedithio)tetrathiafulvalenium]tetrachlorocopper(II) hydrate, (BEDT-TTF)3CuCl4.H2O: first evidence for coexistence of localized and conduction electrons in a metallic charge-transfer salt , 1992 .

[53]  R. Hoffmann,et al.  The band structure of the tetracyanoplatinate chain , 1978 .

[54]  R. Hoffmann,et al.  Counterintuitive Orbital Mixing in Semiempirical and ab Initio Molecular Orbital Calculations , 1978 .