A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input

In this paper, numerical solutions of elliptic partial differential equations with both random input and interfaces are considered. The random coefficients are piecewise smooth in the physical space and moderately depend on a large number of random variables in the probability space. To relieve the curse of dimensionality, a sparse grid collocation algorithm based on the Smolyak construction is used. The numerical method consists of an immersed finite element discretization in the physical space and a Smolyak construction of the extreme of Chebyshev polynomials in the probability space, which leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. Numerical experiments on two-dimensional domains are also presented. Convergence is verified and compared with the Monte Carlo simulations.

[1]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[2]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[3]  Zhilin Li,et al.  A Symmetric and Consistent Immersed Finite Element Method for Interface Problems , 2014, J. Sci. Comput..

[4]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[5]  Fabio Nobile,et al.  A stochastic collocation method for the second order wave equation with a discontinuous random speed , 2013, Numerische Mathematik.

[6]  Nicolas Moës,et al.  An extended stochastic finite element method for solving stochastic partial differential equations on random domains , 2008 .

[7]  Kye T. Wee,et al.  An Analysis of a Broken P1-Nonconforming Finite Element Method for Interface Problems , 2009, SIAM J. Numer. Anal..

[8]  K. Phoon,et al.  Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .

[9]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[10]  Dongbin Xiu,et al.  Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..

[11]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[12]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[13]  Marcel Bieri,et al.  A Sparse Composite Collocation Finite Element Method for Elliptic SPDEs , 2011, SIAM J. Numer. Anal..

[14]  Albert Cohen,et al.  On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.

[15]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2010, SIAM Rev..

[16]  Dongbin Xiu,et al.  Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions , 2013, J. Comput. Phys..

[17]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[18]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[19]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[20]  Do Y. Kwak,et al.  Optimal convergence analysis of an immersed interface finite element method , 2010, Adv. Comput. Math..

[21]  Thomas A. Zang,et al.  An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty , 2003, Comput. Optim. Appl..

[22]  N. Zabaras,et al.  Stochastic inverse heat conduction using a spectral approach , 2004 .

[23]  Tao Tang,et al.  On Discrete Least-Squares Projection in Unbounded Domain with Random Evaluations and its Application to Parametric Uncertainty Quantification , 2014, SIAM J. Sci. Comput..

[24]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[25]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[26]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[27]  Tao Zhou,et al.  Stochastic Galerkin methods for elliptic interface problems with random input , 2011, J. Comput. Appl. Math..

[28]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[29]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[30]  Tao Zhou,et al.  On Sparse Interpolation and the Design of Deterministic Interpolation Points , 2013, SIAM J. Sci. Comput..

[31]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[32]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[33]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[34]  Fabio Nobile,et al.  Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..

[35]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[36]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[37]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[38]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[39]  Tao Zhou,et al.  Multivariate Discrete Least-Squares Approximations with a New Type of Collocation Grid , 2014, SIAM J. Sci. Comput..

[40]  Tao Tang,et al.  Galerkin Methods for Stochastic Hyperbolic Problems Using Bi-Orthogonal Polynomials , 2012, J. Sci. Comput..

[41]  N. Zabaras,et al.  Uncertainty propagation in finite deformations––A spectral stochastic Lagrangian approach , 2006 .

[42]  Xiaoming He,et al.  Immersed finite element methods for parabolic equations with moving interface , 2013 .

[43]  Tao Tang,et al.  Convergence Analysis for Stochastic Collocation Methods to Scalar Hyperbolic Equations with a Random Wave Speed , 2010 .