Overlapping-Field Modeling (Ofm) of Periodic Lattice Metamaterials

[1]  S. Guenneau,et al.  Mapping of Elastic Properties of Twisting Metamaterials Onto Micropolar Continuum Using Static Calculations , 2022, SSRN Electronic Journal.

[2]  S. Casolo A linear-elastic heuristic-molecular modelling for plane isotropic micropolar and auxetic materials , 2021 .

[3]  Wolfgang H. Müller,et al.  Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum , 2021, International Journal of Solids and Structures.

[4]  A. Soh,et al.  Micropolar modeling of a typical bending-dominant lattice comprising zigzag beams , 2021 .

[5]  A.I. Gad,et al.  A strain energy-based homogenization method for 2-D and 3-D cellular materials using the micropolar elasticity theory , 2021 .

[6]  D. Xiao,et al.  Innovative 3D chiral metamaterials under large deformation: Theoretical and experimental analysis , 2020 .

[7]  Zoubida Sekkate,et al.  Elastoplastic mean-field homogenization: recent advances review , 2020, Mechanics of Advanced Materials and Structures.

[8]  Ruben Gatt,et al.  Implementation of periodic boundary conditions for loading of mechanical metamaterials and other complex geometric microstructures using finite element analysis , 2020, Engineering with Computers.

[9]  Dennis M. Kochmann,et al.  Continuum models for stretching- and bending-dominated periodic trusses undergoing finite deformations , 2019, International Journal of Solids and Structures.

[10]  Xiaodong Huang,et al.  Topological design of 3D chiral metamaterials based on couple-stress homogenization , 2019, Journal of the Mechanics and Physics of Solids.

[11]  D. Fang,et al.  A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior , 2018, Journal of the Mechanics and Physics of Solids.

[12]  Zhufeng Yue,et al.  Theoretical search for heterogeneously architected 2D structures , 2018, Proceedings of the National Academy of Sciences.

[13]  R. Lakes,et al.  The two-dimensional elasticity of a chiral hinge lattice metamaterial , 2018, International Journal of Solids and Structures.

[14]  Zhengyi Jiang,et al.  Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review , 2017 .

[15]  Martin Wegener,et al.  Three-dimensional mechanical metamaterials with a twist , 2017, Science.

[16]  D. Kochmann,et al.  Local and nonlocal continuum modeling of inelastic periodic networks applied to stretching-dominated trusses , 2017 .

[17]  Patrizia Trovalusci,et al.  Scale{dependent homogenization of random composites as micropolar continua , 2015 .

[18]  G. Hu,et al.  Micropolar continuum modelling of bi-dimensional tetrachiral lattices , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Guoliang Huang,et al.  Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices , 2012, 1203.4314.

[20]  Lu Tian,et al.  Recent Progress in the Development of Lightweight Porous Materials and Structures , 2012 .

[21]  Massimo Ruzzene,et al.  Elasto-static micropolar behavior of a chiral auxetic lattice , 2012 .

[22]  N. G. Liang,et al.  Lattice type of fracture model for concrete , 2007 .

[23]  M. Gosz,et al.  A local finite element implementation for imposing periodic boundary conditions on composite micromechanical models , 2007 .

[24]  D. McDowell,et al.  Generalized continuum modeling of 2-D periodic cellular solids , 2004 .

[25]  F. Ellyin,et al.  A unified periodical boundary conditions for representative volume elements of composites and applications , 2003 .

[26]  Martin Ostoja-Starzewski,et al.  Lattice models in micromechanics , 2002 .

[27]  W. E. Warren,et al.  Three-fold symmetry restrictions on two-dimensional micropolar materials , 2001 .

[28]  Z. Bažant,et al.  Analogy between micropolar continuum and grid frameworks under initial stress , 1972 .