Low-temperature, solution-processed MoO(x) for efficient and stable organic solar cells.

Sol-gel processed MoO(x) (sMoO(x)) hole-extraction layers for organic solar cells are reported. A Bis(2,4-pentanedionato)molybdenum(VI)dioxide/isopropanol solution is used and only a moderate thermal post deposition treatment at 150 °C in N(2) ambient is required to achieve sMoO(x) layers with a high work-function of 5.3 eV. We demonstrate that in P3HT:PC(60)BM organic solar cells (OSCs) our sMoO(x) layers lead to a high filling factor of about 65% and an efficiency of 3.3% comparable to that of reference devices with thermally evaporated MoO(3) layers (eMoO(3)). At the same time, a substantially improved stability of the OSCs compared to devices using a PEDOT:PSS hole extraction layer is evidenced.

[1]  B. Khelifa,et al.  Structural and optical properties of MoO3 and V2O5 thin films prepared by Spray Pyrolysis , 2006 .

[2]  F. Liu,et al.  Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer , 2010 .

[3]  A. Kahn,et al.  Electronic structure of Vanadium pentoxide: An efficient hole injector for organic electronic materials , 2011 .

[4]  T. Riedl,et al.  Highly efficient simplified organic light emitting diodes , 2007 .

[5]  Wolfgang Kowalsky,et al.  Transparent Inverted Organic Light‐Emitting Diodes with a Tungsten Oxide Buffer Layer , 2008 .

[6]  Jens Meyer,et al.  MoO3 Films Spin‐Coated from a Nanoparticle Suspension for Efficient Hole‐Injection in Organic Electronics , 2011, Advanced materials.

[7]  David S. Ginger,et al.  The Changing Face of PEDOT:PSS Films: Substrate, Bias, and Processing Effects on Vertical Charge Transport† , 2008 .

[8]  M. Quevedo-López,et al.  Enhancement of the photochromic and thermochromic properties of molybdenum oxide thin films by a cadmium sulfide underlayer , 2000 .

[9]  Franky So,et al.  Degradation Mechanisms in Small‐Molecule and Polymer Organic Light‐Emitting Diodes , 2010, Advanced materials.

[10]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[11]  J. H. Scofield,et al.  Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV , 1976 .

[12]  Wolfgang Kowalsky,et al.  Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode , 2009 .

[13]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[14]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[15]  Marcin Wojdyr,et al.  Fityk: a general-purpose peak fitting program , 2010 .

[16]  Paul Heremans,et al.  Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells , 2011 .

[17]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[18]  A. Venkataraman,et al.  Synthesis of Molybdenum Oxide by Thermal Decomposition of Molybdenum Acetylacetonate Sol-Gel , 2002 .

[19]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[20]  Wang Shimin,et al.  Preparation and Characterization of Molybdenum Oxide Thin Films by Sol-Gel Process , 2003 .

[21]  Wolfgang Kowalsky,et al.  Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films , 2009 .

[22]  Thomas Riedl,et al.  Inverted Organic Solar Cells with Sol–Gel Processed High Work‐Function Vanadium Oxide Hole‐Extraction Layers , 2011 .

[23]  A. Kahn,et al.  Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces , 2010 .

[24]  Rui M. Almeida,et al.  Influence of solvent concentration on the microstructure of SiO2−TiO2 sol-gel films , 1997 .

[25]  Robert A. Street,et al.  Interface state recombination in organic solar cells , 2010 .

[26]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[27]  I. Kostis,et al.  Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer , 2012 .

[28]  Paul Heremans,et al.  Long-term operational lifetime and degradation analysis of P3HT:PCBM photovoltaic cells , 2011 .

[29]  T. Riedl,et al.  Solution Processed Vanadium Pentoxide as Charge Extraction Layer for Organic Solar Cells , 2011 .

[30]  Barry P Rand,et al.  Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells. , 2011, ACS applied materials & interfaces.

[31]  A. Kahn,et al.  P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide , 2009 .

[32]  N. P. Barradas,et al.  Processing and characterisation of sol–gel deposited Ta2O5 and TiO2–Ta2O5 dielectric thin films , 1999 .