Integrating spatial gene expression and breast tumour morphology via deep learning

[1]  Christopher Ré,et al.  Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks , 2020, J. Am. Medical Informatics Assoc..

[2]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[3]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[4]  Russ B. Altman,et al.  Classifying Non-Small Cell Lung Cancer Histopathology Types and Transcriptomic Subtypes using Convolutional Neural Networks , 2019, bioRxiv.

[5]  M. Kurosumi,et al.  Prognostic significance of tumour-infiltrating lymphocytes for oestrogen receptor-negative breast cancer without lymph node metastasis , 2019, Oncology letters.

[6]  Patrik L. Ståhl,et al.  Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in mammalian tissue sections , 2018, Nature Protocols.

[7]  N. Razavian,et al.  Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning , 2018, Nature Medicine.

[8]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[9]  Robert C. Jones,et al.  Modeling Spatial Correlation of Transcripts with Application to Developing Pancreas , 2018, Scientific Reports.

[10]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[11]  Meyke Hermsen,et al.  1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset , 2018, GigaScience.

[12]  Qianjin Feng,et al.  Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis. , 2017, Cancer research.

[13]  Ehsan Kazemi,et al.  Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images , 2017, bioRxiv.

[14]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[15]  Aleksey Boyko,et al.  Detecting Cancer Metastases on Gigapixel Pathology Images , 2017, ArXiv.

[16]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[17]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Ce Zhang,et al.  Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features , 2016, Nature Communications.

[19]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[20]  Dayong Wang,et al.  Deep Learning for Identifying Metastatic Breast Cancer , 2016, ArXiv.

[21]  Eran Halperin,et al.  Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies , 2016, Nature Methods.

[22]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  James Zou,et al.  Intersecting Faces: Non-negative Matrix Factorization With New Guarantees , 2015, ICML.

[25]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[26]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[27]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[28]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[29]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[30]  Swati Sinha,et al.  Identification of Genomic Targets of Transcription Factor Aebp1 and its role in Survival of Glioma Cells , 2012, Molecular Cancer Research.

[31]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[32]  N. Shinohara,et al.  Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells , 2012, British Journal of Cancer.

[33]  Anne E Carpenter,et al.  Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software , 2011, Bioinform..

[34]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  M. Colombo,et al.  Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. , 2008, Cancer research.

[36]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[37]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[38]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[39]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[40]  Matthew E. Zygmont,et al.  MRNA stability and overexpression of fatty acid synthase in human breast cancer cell lines. , 2007, Anticancer research.

[41]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .