Fast multiple-fluid simulation using Helmholtz free energy

Multiple-fluid interaction is an interesting and common visual phenomenon we often observe. In this paper, we present an energy-based Lagrangian method that expands the capability of existing multiple-fluid methods to handle various phenomena, such as extraction, partial dissolution, etc. Based on our user-adjusted Helmholtz free energy functions, the simulated fluid evolves from high-energy states to low-energy states, allowing flexible capture of various mixing and unmixing processes. We also extend the original Cahn-Hilliard equation to be better able to simulate complex fluid-fluid interaction and rich visual phenomena such as motion-related mixing and position based pattern. Our approach is easily integrated with existing state-of-the-art smooth particle hydrodynamic (SPH) solvers and can be further implemented on top of the position based dynamics (PBD) method, improving the stability and incompressibility of the fluid during Lagrangian simulation under large time steps. Performance analysis shows that our method is at least 4 times faster than the state-of-the-art multiple-fluid method. Examples are provided to demonstrate the new capability and effectiveness of our approach.

[1]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[2]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[3]  Greg Turk,et al.  Hybrid smoothed particle hydrodynamics , 2011, SCA '11.

[4]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[5]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[6]  Matthias Teschner,et al.  IISPH‐FLIP for incompressible fluids , 2014, Comput. Graph. Forum.

[7]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[8]  Junseok Kim,et al.  A continuous surface tension force formulation for diffuse-interface models , 2005 .

[9]  Martin Servin,et al.  Constraint Fluids , 2012, IEEE Transactions on Visualization and Computer Graphics.

[10]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[11]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[12]  Qunsheng Peng,et al.  Realistic simulation of mixing fluids , 2011, The Visual Computer.

[13]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[14]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[15]  Hongan Wang,et al.  Local Poisson SPH For Viscous Incompressible Fluids , 2012, Comput. Graph. Forum.

[16]  Junseok Kim,et al.  A numerical method for the Cahn–Hilliard equation with a variable mobility , 2007 .

[17]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[18]  Chang-Hun Kim,et al.  Discontinuous fluids , 2005, ACM Trans. Graph..

[19]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[20]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[21]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[22]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[23]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[24]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[25]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[26]  Sung Yong Shin,et al.  A Hybrid Approach to Multiple Fluid Simulation using Volume Fractions , 2010, Comput. Graph. Forum.

[27]  Junseok Kim,et al.  A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows , 2009 .

[28]  Robert E. Maples,et al.  Petroleum Refinery Process Economics , 1993 .

[29]  Sung Yong Shin,et al.  A unified handling of immiscible and miscible fluids , 2008, Comput. Animat. Virtual Worlds.

[30]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[31]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[32]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[33]  Franck Boyer,et al.  Study of a three component Cahn-Hilliard flow model , 2006 .

[34]  Byungmoon Kim,et al.  Multi-phase fluid simulations using regional level sets , 2010, ACM Trans. Graph..

[35]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[36]  J. Monaghan SPH without a Tensile Instability , 2000 .

[37]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[38]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[39]  Robert Bridson,et al.  MultiFLIP for energetic two-phase fluid simulation , 2012, TOGS.

[40]  Eitan Grinspun,et al.  Multimaterial mesh-based surface tracking , 2014, ACM Trans. Graph..

[41]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[42]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[43]  HuShi-Min,et al.  Fast multiple-fluid simulation using Helmholtz free energy , 2015 .

[44]  Shi-Min Hu,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014, ACM Trans. Graph..

[45]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[46]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[47]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes , 2014, IEEE Transactions on Visualization and Computer Graphics.

[48]  Chang-Hun Kim,et al.  Bubbles alive , 2008, ACM Trans. Graph..

[49]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[50]  Manuel Hirschler,et al.  An Application of the Cahn-Hilliard Approach to Smoothed Particle Hydrodynamics , 2014 .

[51]  Renato Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, ACM Trans. Graph..

[52]  Ronald Fedkiw,et al.  Mass and momentum conservation for fluid simulation , 2011, SCA '11.

[53]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[54]  Ole Østerby,et al.  A two-continua approach to Eulerian simulation of water spray , 2013, ACM Trans. Graph..

[55]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[56]  Harald Garcke,et al.  On anisotropic order parameter models for multi-phase system and their sharp interface limits , 1998 .

[57]  Enhua Wu,et al.  Volume fraction based miscible and immiscible fluid animation , 2010, Comput. Animat. Virtual Worlds.