Recent advances in (hetero)cyclizations of N-vinylazoles (microreview)

[1]  M. Kawase,et al.  Cycloaddition Reaction of Mesoionic 4-Trifluoroacetyl-1,3-oxazolium-5-olates with Enamines Affording 2-Trifluoroacetylpyrroles , 2019, European Journal of Organic Chemistry.

[2]  M. Nirmala,et al.  Highly active homoleptic nickel(II) bis-N-heterocyclic carbene catalyst for Suzuki–Miyaura and Heck cross-coupling reactions , 2019, Polyhedron.

[3]  M. Kaźmierczak,et al.  1,3-Dipolar cycloaddition in the synthesis of trifluoromethyl-substituted isoxazolidinyl derivatives of nucleobases , 2018, Journal of Fluorine Chemistry.

[4]  Student Affairs , 2018, Higher Education Abstracts.

[5]  Yao-Wei Gao,et al.  Regio- and Enantioselective [3+2] Cycloaddition of α-Purine Substituted Acrylates with Allenes: An Approach to Chiral Carbocyclic Nucleosides , 2018, Advanced Synthesis & Catalysis.

[6]  J. Keldenich,et al.  Discovery of Molidustat (BAY 85‐3934): A Small‐Molecule Oral HIF‐Prolyl Hydroxylase (HIF‐PH) Inhibitor for the Treatment of Renal Anemia , 2018, ChemMedChem.

[7]  B. Xiao,et al.  Rhodium(III)-Catalyzed Directed C-H Coupling with Methyl Trifluoroacrylate: Diverse Synthesis of Fluoroalkenes and Heterocycles. , 2018, Organic letters.

[8]  D. Hadjipavlou-Litina,et al.  Synthesis and Biological Evaluation of Novel Hybrid Molecules Containing Purine, Coumarin and Isoxazoline or Isoxazole Moieties , 2017, The open medicinal chemistry journal.

[9]  M. Xie,et al.  Highly Enantioselective Synthesis of Chiral Cyclopropyl Nucleosides via Catalytic Asymmetric Intermolecular Cyclopropanation. , 2017, Organic letters.

[10]  Yibiao Li,et al.  Synthesis of benzo[4, 5]imidazo[2,1-a]isoquinolines via intramolecular C–H bond functionalization , 2017, Chemistry of Heterocyclic Compounds.

[11]  M. Xie,et al.  Synthesis of Chiral Cyclopropyl Carbocyclic Purine Nucleosides via Asymmetric Intramolecular Cyclopropanations Catalyzed by a Chiral Ruthenium(II) Complex , 2016 .

[12]  J. Choudhury,et al.  Rhodium(III)-Catalyzed Nonaromatic sp2 C-H Activation/Annulation Using NHC as a Directing and Functionalizable Group , 2016 .

[13]  Yao-Wei Gao,et al.  Synthesis of Azacyclic Nucleoside Analogues via Asymmetric [3 + 2] Cycloaddition of 9-(2-Tosylvinyl)-9H-purines. , 2016, Organic letters.

[14]  Qi-Liang Yang,et al.  A rapid and divergent access to chiral azacyclic nucleoside analogues via highly enantioselective 1,3-dipolar cycloaddition of β-nucleobase substituted acrylates. , 2014, Chemical communications.

[15]  R. Parenti,et al.  Synthesis and biological evaluation of 3-hydroxymethyl-5-(1H-1,2,3-triazol) isoxazolidines. , 2013, Bioorganic & medicinal chemistry.

[16]  Bo Han,et al.  Rhodium(III)-catalyzed vinylic sp2 C-H bond functionalization: efficient synthesis of pyrido[1,2-α]benzimidazoles and imidazo[1,2-α]pyridines. , 2013, Organic & biomolecular chemistry.

[17]  Xun Sun,et al.  Rhodium(III)-catalyzed direct selective C(5)-H oxidative annulations of 2-substituted imidazoles and alkynes by double C-H activation. , 2013, Organic letters.

[18]  N. Kambe,et al.  Synthesis of imidazo and benzimidazo[2,1-a]isoquinolines by rhodium-catalyzed intramolecular double C-H bond activation. , 2013, Organic & biomolecular chemistry.

[19]  Junnan Zheng,et al.  Palladium‐Catalyzed Oxidative Intramolecular CC Bond Formation via Double sp2 CH Activation between the 2‐Position of Imidazoles and a Benzene Ring , 2012 .

[20]  D. Piotrowska,et al.  Design, Synthesis and Cytotoxicity of a New Series of Isoxazolidine Based Nucleoside Analogues , 2011, Archiv der Pharmazie.

[21]  R. Gavioli,et al.  Synthesis and biological evaluation of diastereoisomerically pure N,O-nucleosides. , 2010, Bioorganic & medicinal chemistry.

[22]  N. Gusarova,et al.  Synthesis and Properties of 2-(Diorganylphosphorylhydroxymethyl)-1-organylimidazoles , 2002 .

[23]  韩波,et al.  Rhodium(III)-catalyzed vinylic sp2 C–H bond functionalization: efficient synthesis of pyrido[1,2-α]- benzimidazoles and imidazo[1,2-α]pyridines , 2013 .