An isogeometric finite element formulation for frictionless contact of Cosserat rods with unconstrained directors

[1]  P. Cartraud,et al.  Solid and 3D beam finite element models for the nonlinear elastic analysis of helical strands within a computational homogenization framework , 2021, Computers & Structures.

[2]  Y. Ye,et al.  Linear and Nonlinear Programming , 2021, International Series in Operations Research & Management Science.

[3]  R. Sauer,et al.  An isogeometric finite element formulation for geometrically exact Timoshenko beams with extensible directors , 2020, ArXiv.

[4]  Przemysław Litewka,et al.  Contact Between 3D Beams with Deformable Circular Cross-Sections – Numerical Verification , 2018 .

[5]  Alexander Konyukhov,et al.  Consistent development of a beam‐to‐beam contact algorithm via the curve‐to‐solid beam contact: Analysis for the nonfrictional case , 2018, 1811.10590.

[6]  Josef Kiendl,et al.  An isogeometric collocation method for frictionless contact of Cosserat rods , 2017 .

[7]  Alexander Popp,et al.  Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory Versus Simo–Reissner Theory , 2016, 1609.00119.

[8]  Wolfgang A. Wall,et al.  A Unified Approach for Beam-to-Beam Contact , 2016, ArXiv.

[9]  Peter Wriggers,et al.  A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction , 2016 .

[10]  Wolfgang A. Wall,et al.  A Finite Element Approach for the Line-to-Line Contact Interaction of Thin Beams with Arbitrary Orientation , 2016, ArXiv.

[11]  Laurent Orgéas,et al.  Reversible dilatancy in entangled single-wire materials. , 2016, Nature materials.

[12]  Roger A. Sauer,et al.  A geometrically exact finite beam element formulation for thin film adhesion and debonding , 2014 .

[13]  Roger A. Sauer,et al.  NURBS-enriched contact finite elements , 2014 .

[14]  Stefanie Reese,et al.  A solid-beam finite element and non-linear constitutive modelling , 2013 .

[15]  Roger A. Sauer,et al.  Local finite element enrichment strategies for 2D contact computations and a corresponding post-processing scheme , 2013 .

[16]  Manfred Bischoff,et al.  A point to segment contact formulation for isogeometric, NURBS based finite elements , 2013 .

[17]  Damien Durville,et al.  Contact-friction modeling within elastic beam assemblies: an application to knot tightening , 2012 .

[18]  Wolfgang A. Wall,et al.  Numerical method for the simulation of the Brownian dynamics of rod‐like microstructures with three‐dimensional nonlinear beam elements , 2012 .

[19]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[20]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[21]  Jia Lu,et al.  Isogeometric contact analysis: Geometric basis and formulation for frictionless contact , 2011 .

[22]  D Ciazynski,et al.  Numerical Simulation of the Mechanical Behavior of ITER Cable-In-Conduit Conductors , 2010, IEEE Transactions on Applied Superconductivity.

[23]  Damien Durville,et al.  Simulation of the mechanical behaviour of woven fabrics at the scale of fibers , 2010 .

[24]  H. B. Coda A solid-like FEM for geometrically non-linear 3D frames , 2009 .

[25]  F. Gruttmann,et al.  A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models , 2009 .

[26]  Roger A Sauer,et al.  Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta , 2009, Computer methods in biomechanics and biomedical engineering.

[27]  Noel C. Perkins,et al.  Electrostatics and Self-Contact in an Elastic Rod Approximation for DNA , 2009 .

[28]  Alexander Konyukhov,et al.  On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry , 2008 .

[29]  N. Perkins,et al.  Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables , 2005 .

[30]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[31]  Gerhard A. Holzapfel,et al.  Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems , 2003 .

[32]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[33]  Peter Wriggers,et al.  Contact between 3D beams with rectangular cross‐sections , 2002 .

[34]  P. Wriggers,et al.  Smooth C1‐interpolations for two‐dimensional frictional contact problems , 2001 .

[35]  T. Laursen,et al.  A framework for development of surface smoothing procedures in large deformation frictional contact analysis , 2001 .

[36]  Jaewook Rhim,et al.  A vectorial approach to computational modelling of beams undergoing finite rotations , 1998 .

[37]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[38]  P. Wriggers,et al.  On contact between three-dimensional beams undergoing large deflections , 1997 .

[39]  O. O’Reilly,et al.  On steady motions of an elastic rod with application to contact problems , 1997 .

[40]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[41]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[42]  J. C. Simo,et al.  A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .

[43]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[44]  M. B. Rubin,et al.  On the significance of normal cross-sectional extension in beam theory with application to contact problems , 1989 .

[45]  P. M. Naghdi,et al.  Finite Deformation of Elastic Rods and Shells , 1981 .

[46]  Stuart S. Antman,et al.  Dynamical theory of hyperelastic rods , 1966 .