Theory of non-Kerr law generalized vector solitons

The soliton perturbation theory is used to obtain the adiabatic parameter dynamics of the perturbed vector solitons that are governed by the generalized non-linear Schrodinger's equation. The perturbation terms considered in this paper are of dispersive, dissipative as well of non-local type.

[1]  Koshiba,et al.  Algebraic solitary-wave solutions of a nonlinear Schrödinger equation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  A. Biswas DYNAMICS OF GAUSSIAN AND SUPER-GAUSSIAN SOLITONS IN BIREFRINGENT OPTICAL FIBERS , 2001 .

[3]  Cai,et al.  Pattern structures on generalized nonlinear Schrödinger equations with various nonlinear terms. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Y. Kivshar,et al.  Bright and dark spatial solitons in non-Kerr media , 1998 .

[5]  Yuri S. Kivshar,et al.  Self-focusing and transverse instabilities of solitary waves , 2000 .

[6]  V. Skarka,et al.  Generation of light spatiotemporal solitons from asymmetric pulses in saturating nonlinear media , 1999 .

[7]  Adrian Ankiewicz,et al.  Solitons : nonlinear pulses and beams , 1997 .

[8]  Ole Bang,et al.  Subcritical localization in the discrete nonlinear Schrodinger equation with arbitrary power nonlinearity , 1994 .

[9]  P L Chu,et al.  Breathing spatial solitons in non-Kerr media. , 1997, Optics letters.

[10]  Pelinovsky,et al.  Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Enns,et al.  Variational approach to bistable solitary waves of the first kind in d dimensions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  A. Snyder,et al.  Spatial solitons of the power-law nonlinearity. , 1993, Optics letters.

[13]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[14]  G. Rowlands,et al.  Nonlinear Waves, Solitons and Chaos , 1990 .

[15]  B. Malomed,et al.  Three-dimensional spinning solitons in the cubic-quintic nonlinear medium. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  A Ankiewicz,et al.  Hamiltonian-versus-energy diagrams in soliton theory. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Akira Hasegawa,et al.  Massive WDM and TDM Soliton Transmission Systems , 2002 .

[18]  Nail Akhmediev,et al.  Spatial solitons in Kerr and Kerr-like media , 1998 .

[19]  Jianke Yang,et al.  Stability and Evolution of Solitary Waves in Perturbed Generalized Nonlinear Schrödinger Equations , 2000, SIAM J. Appl. Math..

[20]  Mario Bertolotti,et al.  IV Nonlinear Wave Propagation in Planar Structures , 1989 .

[21]  Athanassios S. Fokas,et al.  Important developments in soliton theory , 1993 .

[22]  Yuri S. Kivshar,et al.  Dark optical solitons: physics and applications , 1998 .

[23]  Anjan Biswas,et al.  Perturbation of solitons due to power law nonlinearity , 2001 .

[24]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[25]  V. Karpman,et al.  Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion , 2000 .

[26]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[27]  Pratima Sen,et al.  SUPPRESSION OF SOLITON INSTABILITY BY HIGHER ORDER NONLINEARITY IN LONG HAUL OPTICAL COMMUNICATION SYSTEMS , 1999 .

[28]  Yuri S. Kivshar,et al.  Dynamics of Solitons in Nearly Integrable Systems , 1989 .