Information-disturbance tradeoff in quantum measurement on the uniform ensemble
暂无分享,去创建一个
[1] Simon Litsyn,et al. Quantum error detection I: Statement of the problem , 1999, IEEE Trans. Inf. Theory.
[2] I. D. Ivonovic. Geometrical description of quantal state determination , 1981 .
[3] A. F.. Foundations of Physics , 1936, Nature.
[4] G. Illies,et al. Communications in Mathematical Physics , 2004 .
[5] Takuya Kon-no,et al. Transactions of the American Mathematical Society , 1996 .
[6] October I. Physical Review Letters , 2022 .
[7] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[8] E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .
[9] P. Lugol. Annalen der Physik , 1906 .
[10] C. cohen-tannoudji,et al. Quantum Mechanics: , 2020, Fundamentals of Physics II.
[11] R. Werner. OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.
[12] Eric M. Rains. Polynomial invariants of quantum codes , 2000, IEEE Trans. Inf. Theory.
[13] Günther Ludwig. Foundations of quantum mechanics , 1983 .
[14] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[15] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[16] T. Andô. Concavity of certain maps on positive definite matrices and applications to Hadamard products , 1979 .
[17] M. Sentís. Quantum theory of open systems , 2002 .
[18] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[19] J. Seidel,et al. BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .
[20] Harald Niederreiter,et al. Introduction to finite fields and their applications: List of Symbols , 1986 .
[21] Physical Review , 1965, Nature.
[22] D. Bures. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .
[23] Charles H. Bennett,et al. Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.
[24] Akademii︠a︡ medit︠s︡inskikh nauk Sssr. Journal of physics , 1939 .
[25] K R W Jones. Quantum limits to information about states for finite dimensional Hilbert space , 1991 .
[26] W. Wootters. Random quantum states , 1990 .
[27] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[28] Pérès,et al. Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[29] A. Calderbank,et al. Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .
[30] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[31] R. Jozsa,et al. Lower bound for accessible information in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[32] R. Werner,et al. Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.
[33] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[34] Benjamin Schumacher. Sending quantum entanglement through noisy channels , 1996 .
[35] P. Morse. Annals of Physics , 1957, Nature.
[36] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.