A Fast Algorithm for the Decomposition of Graphs and Posets

Many combinatorial (optimization) problems of graphs (e.g., finding maximal independent sets or maximum matchings) and acyclic networks (e.g., finding shortest paths or maximum flows) can be solved by means of decomposition of the graph (network) into autonomous subsets. (Given a relation R on A, a subset B of A is called autonomous, if for each α ∈ A\B the following holds: if (α, β0) ∈ R for some β0 ∈ B, then (α, β) ∈ R for all β ∈ B; if (β0, α) ∈ R for some β0 ∈ B, then (β, α) ∈ R for all β ∈ B). We present an algorithm which finds all autonomous subsets of graphs and posets with p points in O(p3) time and O(p2) space. The ideas behind this algorithm reveal rather strong connections between graph decomposition, homomorphisms of graphs and posets, and comparability graph recognition. Furthermore, the well-known series-parallel decomposition for graphs and posets is contained as a special case.

[1]  Egon Balas,et al.  Graph substitution and set packing polytopes , 1977, Networks.

[2]  T. Hiraguchi On the Dimension of Partially Ordered Sets. , 1951 .

[3]  Martin Charles Golumbic,et al.  Comparability graphs and a new matroid , 1977, J. Comb. Theory, Ser. B.

[4]  M. Aschbacher A homomorphism theorem for finite graphs , 1976 .

[5]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[6]  Eugene L. Lawler,et al.  The Recognition of Series Parallel Digraphs , 1982, SIAM J. Comput..

[7]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[8]  Paul A. Jensen Optimization of Series-Parallel-Series Networks , 1970, Oper. Res..

[9]  Z. Birnbaum,et al.  Modules of Coherent Binary Systems , 1965 .

[10]  Joseph Neggers Counting finite posets , 1978 .

[11]  Michel Habib,et al.  On the X-join decomposition for undirected graphs , 1979, Discret. Appl. Math..

[12]  R L Sielken,et al.  A New Statistical Approach to Project Scheduling , 1977 .

[13]  L. N. Shevrin,et al.  To the undimmed memory of petr Grigor'evich Kontorovich: Partially ordered sets and their comparability graphs , 1970 .

[14]  A. Nijenhuis Combinatorial algorithms , 1975 .

[15]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[16]  Andreas Blass,et al.  Graphs with unique maximal clumpings , 1978, J. Graph Theory.

[17]  Jeffrey B. Sidney,et al.  Decomposition Algorithms for Single-Machine Sequencing with Precedence Relations and Deferral Costs , 1975, Oper. Res..

[18]  E. Lawler Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Precedence Constraints , 1978 .

[19]  William T. Trotter,et al.  The dimension of a comparability graph , 1976 .

[20]  Walter Schlee,et al.  Ein Algorithmus für Teilnetzpläne , 1973, Z. Oper. Research.

[21]  R. Duffin Topology of series-parallel networks , 1965 .

[22]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[23]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[24]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[25]  Clyde L. Monma,et al.  Sequencing with Series-Parallel Precedence Constraints , 1979, Math. Oper. Res..

[26]  Clyde L. Monma The Two-Machine Maximum Flow Time Problem with Series-Parallel Precedence Constraints: An Algorithm and Extensions , 1979, Oper. Res..

[27]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[28]  T. C. Hu,et al.  Tree decomposition algorithm for large networks , 1977, Networks.

[29]  F. J. Radermacher,et al.  Reduktion von Flußnetzplänen , 1974 .

[30]  Salah E. Elmaghraby,et al.  Activity networks: Project planning and control by network models , 1977 .