Effect of sputter power on the photobias stability of zinc-tin-oxide field-effect transistors

This study examined the effect of sputtering power on the performance of zinc-tin-oxide field-effect transistors and the stability under photobias stress. Large improvements in the saturation mobility and subthreshold swing were found in devices fabricated at higher sputtering powers; 13.80 cm2/V·s, 0.33 V/decade at a power of 400 W compared with 2.70 cm2/V·s, 1.19 V/decade at a power of 50 W. The threshold voltage shift under negative bias illumination stress (NBIS) for the device fabricated at a power of 400 W shows superior properties (−2.41 V) compared with that (−5.56 V) of the device fabricated at 50 W. The improvements in electrical performance and NBIS stability were attributed to the formation of a denser film and the reduced dielectric/channel interfacial trap densities due to the more energetic bombardment used under high power sputtering conditions.

[1]  C. Hwang,et al.  Theoretical and experimental studies on the electronic structure of crystalline and amorphous ZnSnO3 thin films , 2013 .

[2]  Jae Kyeong Jeong,et al.  Photobias instability of high performance solution processed amorphous zinc tin oxide transistors. , 2013, ACS applied materials & interfaces.

[3]  Roy G. Gordon,et al.  Atomic layer deposited zinc tin oxide channel for amorphous oxide thin film transistors , 2012 .

[4]  M. Mativenga,et al.  Increase of interface and bulk density of states in amorphous-indium-gallium-zinc-oxide thin-film transistors with negative-bias-under-illumination-stress time , 2012 .

[5]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[6]  Jae Kyeong Jeong,et al.  Improvement of the photo-bias stability of the Zn–Sn–O field effect transistors by an ozone treatment , 2012 .

[7]  Young-Su Lee,et al.  Microscopic origin of universal quasilinear band structures of transparent conducting oxides. , 2012, Physical review letters.

[8]  Jeong Hwan Kim,et al.  Optical modeling and experimental verification of light induced phenomena in In-Ga-Zn-O thin film transistors with varying gate insulator thickness , 2012 .

[9]  Jin Jang,et al.  Suppression in the negative bias illumination instability of Zn-Sn-O transistor using oxygen plasma treatment , 2011 .

[10]  Jeong Hwan Kim,et al.  Correlation of the change in transfer characteristics with the interfacial trap densities of amorphous In–Ga–Zn–O thin film transistors under light illumination , 2011 .

[11]  C. Hwang,et al.  Effect of catalyst layer density and growth temperature in rapid atomic layer deposition of silica using tris(tert-pentoxy)silanol. , 2011, ACS applied materials & interfaces.

[12]  Hyun Jae Kim,et al.  Effects of UV light and carbon nanotube dopant on solution-based indium gallium zinc oxide thin-film transistors , 2011 .

[13]  Jang-Yeon Kwon,et al.  Review paper: Transparent amorphous oxide semiconductor thin film transistor , 2011 .

[14]  Cheol Seong Hwang,et al.  Role of ZrO2 incorporation in the suppression of negative bias illumination- induced instability in Zn-Sn-O thin film transistors , 2011 .

[15]  Jae Kyeong Jeong,et al.  Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors , 2011 .

[16]  Dong Lim Kim,et al.  Effect of Zr addition on ZnSnO thin-film transistors using a solution process , 2010 .

[17]  Sung-Min Yoon,et al.  Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor , 2010 .

[18]  Jin Jang,et al.  Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors , 2010 .

[19]  Chi-Sun Hwang,et al.  Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With $\hbox{SiN}_{x}$ and $ \hbox{SiO}_{2}$ Gate Dielectrics , 2010, IEEE Electron Device Letters.

[20]  M. Kanatzidis,et al.  High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors. , 2010, Journal of the American Chemical Society.

[21]  Hyun Jae Kim,et al.  Fabrication of transparent nanocrystalline InGaO3(ZnO)2 thin films using a solution process , 2010 .

[22]  Hyun Jae Kim,et al.  Electrical characteristics of solution‐processed InGaZnO thin film transistors depending on Ga concentration , 2010 .

[23]  Tobin J. Marks,et al.  Transparent electronics : from synthesis to applications , 2010 .

[24]  U-In Chung,et al.  Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors , 2009 .

[25]  Po-Tsun Liu,et al.  Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress , 2009 .

[26]  C. Hwang,et al.  Atomic Layer Deposition of Ruthenium Nanoparticles Using a Low-Density Dielectric Film as Template Structure , 2009 .

[27]  David P. Norton,et al.  High-Performance Indium Gallium Zinc Oxide Transparent Thin-Film Transistors Fabricated by Radio-Frequency Sputtering , 2008 .

[28]  David Hong,et al.  Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors , 2008 .

[29]  M.M. De Souza,et al.  A Comparison of the Performance and Stability of ZnO-TFTs With Silicon Dioxide and Nitride as Gate Insulators , 2008, IEEE Transactions on Electron Devices.

[30]  E. Fortunato,et al.  Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors , 2007 .

[31]  E. Fortunato,et al.  Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs , 2007 .

[32]  Pedro Barquinha,et al.  Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide , 2006 .

[33]  H. Ohta,et al.  Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4 , 2005 .

[34]  E. Fortunato,et al.  Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature , 2005 .

[35]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[36]  Y. Jung,et al.  Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film , 2003 .

[37]  K. Ellmer,et al.  Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties , 2000 .

[38]  Ronald P. Howson,et al.  Use of the magnetron-sputtering technique for the control of the properties of indium tin oxide thin films , 1999 .

[39]  Yoshifumi Ota,et al.  Low resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films , 1990 .

[40]  C. Hwang,et al.  Ab initio study on the structural characteristics of amorphous Zn 2 SnO 4 , 2013 .

[41]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[42]  Dong Lim Kim,et al.  Influence of thermal parameter on solution-processed Zr-doped ZTO thin-film transistors , 2011 .