Phase diagrams for alkali-activated slag binders

Phase diagrams for alkali-activated slag (AAS) binders are simulated at (metastable) thermodynamic equilibrium, spanning the relevant compositional envelopes for these materials. The phase diagrams are generally consistent with experimental observations in the literature, dominated by calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gels and Mg-Al layered double hydroxides. Relationships between the stabilities of the predicted solid phase assemblages, pore solution compositions, and the bulk chemical composition are identified, yielding an improved understanding of AAS binder chemistry. Stratlingite is predicted at low to intermediate Si concentrations and at high Al content, while zeolites (and thus most likely also disordered alkali-aluminosilicate (hydrate) gels) tend to precipitate at higher concentrations of both Si and Al; katoite and AFm-type phases are stabilised at intermediate levels of CaO + Al2O3 + MgO. The application of these results in designing AAS binders can enable the phase assemblages and chemical properties of these materials to be more precisely controlled.

[1]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[2]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[3]  B. Lothenbach,et al.  Properties of magnesium silicate hydrates (M-S-H) , 2016 .

[4]  B. Lothenbach,et al.  Thermodynamic modelling of alkali-activated slag cements , 2015 .

[5]  J. Deventer,et al.  The Role of Al in Cross‐Linking of Alkali‐Activated Slag Cements , 2015 .

[6]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[7]  T. Nenoff,et al.  Thermochemistry of Hydrotalcite-like Phases Intercalated with CO32-, NO3-, Cl-, I-, and ReO4- , 2005 .

[8]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[9]  A. Atkinson,et al.  Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure , 2002 .

[10]  F. Glasser,et al.  Stability of strätlingite in the CASH system , 2016 .

[11]  Oswaldo Burciaga-D Structure, Mechanisms of Reaction, and Strength of an Alkali-Activated Blast-Furnace Slag , 2013 .

[12]  Mohammad Shafiur Rahman Dehydration and Microstructure , 2008 .

[13]  Karen L. Scrivener,et al.  Conclusions of the International RILEM TC 186-ISA workshop on Internal Sulfate Attack and Delayed Ettringite Formation (4-6 September 2002, Villars, Switzerland) , 2005 .

[14]  Dmitrii A. Kulik,et al.  GEM-SELEKTOR GEOCHEMICAL MODELING PACKAGE: TSolMod LIBRARY AND DATA INTERFACE FOR MULTICOMPONENT PHASE MODELS , 2012 .

[15]  B. Lothenbach,et al.  Hydration of alkali-activated slag: thermodynamic modelling , 2007 .

[16]  Fredrik P. Glasser,et al.  A thermodynamic model for blended cements. II: Cement hydrate phases; thermodynamic values and modelling studies , 1992 .

[17]  H. Panepucci,et al.  29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes , 2001 .

[18]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .

[19]  Xinyuan Ke,et al.  Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides , 2016 .

[20]  John L. Provis,et al.  The fate of iron in blast furnace slag particles during alkali-activation , 2014 .

[21]  S. Bernal,et al.  Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[22]  I. Richardson,et al.  Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag , 1992 .

[23]  S. Bernal,et al.  Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders , 2015 .

[24]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[25]  E. C. Beutner Slaty cleavage and related strain in Martinsburg Slate, Delaware Water Gap, New Jersey , 1978 .

[26]  H. Manzano,et al.  A model for the C-A-S-H gel formed in alkali-activated slag cements , 2011 .

[27]  K. Scrivener,et al.  Hydration states of AFm cement phases , 2015 .

[28]  F. Glasser,et al.  Hydrotalcite-like minerals (M2Al(OH)6(CO3)0.5.XH2O, where M = Mg, Zn, Co, Ni) in the environment: synthesis, characterization and thermodynamic stability , 2003 .

[29]  Barbara Lothenbach,et al.  Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O , 2007 .

[30]  F. Glasser The stability of ettringite , 2004 .

[31]  H. Helgeson,et al.  Summary and critique of the thermodynamic properties of rock forming minerals , 1978 .

[32]  F. Puertas,et al.  Carbonation process of alkali-activated slag mortars , 2006 .

[33]  Hua Xu,et al.  Characterization of Aged Slag Concretes , 2008 .

[34]  D. Peak Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. , 2006, Journal of colloid and interface science.

[35]  R. Barbarulo,et al.  Chemical Equilibria Between C–S–H and Ettringite, at 20 and 85 °C , 2007 .

[36]  G. Saoût,et al.  Influence of limestone on the hydration of Portland cements , 2008 .

[37]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[38]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[39]  Jueshi Qian,et al.  High performance cementing materials from industrial slags — a review , 2000 .

[40]  A. Navrotsky,et al.  Thermochemistry of hydrotalcite-like phases in the MgO-Al2O3-CO2-H2O system: A determination of enthalpy, entropy, and free energy , 2005 .

[41]  J. Morse,et al.  Calcium carbonate formation and dissolution. , 2007, Chemical reviews.

[42]  G. Ayoko,et al.  Sulfate intercalated layered double hydroxides prepared by the reformation effect , 2011, Journal of Thermal Analysis and Calorimetry.

[43]  T. Yoneda,et al.  Surface complexation reactions of inorganic anions on hydrotalcite-like compounds. , 2012, Journal of colloid and interface science.

[44]  F. J. Pearson,et al.  Nagra/PSI Chemical Thermodynamic Data Base 01/01 , 2002 .

[45]  F. Glasser,et al.  Erratum to: Hydrotalcite-like minerals (M2Al(OH)6(CO3)0.5.XH2O, where M = Mg, Zn, Co, Ni) in the environment: synthesis, characterization and thermodynamic stability , 2003 .

[46]  B. Lothenbach,et al.  Magnesium perturbation in low-pH concretes placed in clayey environment—solid characterizations and modeling , 2016 .

[47]  B. Lothenbach,et al.  Corrigendum to “Thermodynamic modelling of alkali-activated slag-based cements” [Appl. Geochem. 61 (2015) 233–247] , 2016 .

[48]  M. Barsoum,et al.  Chemical and Microstructural Characterization of 20‐Month‐Old Alkali‐Activated Slag Cements , 2010 .

[49]  John L. Provis,et al.  Alkali activated materials : state-of-the-art report, RILEM TC 224-AAM , 2014 .

[50]  J. Beaudoin,et al.  Effect of temperature on sulphate adsorption/desorption by tricalcium silicate hydrates , 1994 .

[51]  Rupert J. Myers,et al.  A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation , 2014 .

[52]  B. Lothenbach,et al.  Thermodynamic modelling of the hydration of Portland cement , 2006 .

[53]  Frank Winnefeld,et al.  Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .

[54]  Zhibao Li,et al.  Solubility and KSP of Mg4Al2(OH)14·3H2O at the various ionic strengths , 2012 .

[55]  Fredrik P. Glasser,et al.  A thermodynamic model for blended cements , 1992 .

[56]  Ionel Michael Navon,et al.  VARIATM—A FORTRAN program for objective analysis of pseudostress wind fields using large-scale conjugate-gradient minimization , 1991 .

[57]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[58]  Thomas Wagner,et al.  GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes , 2012, Computational Geosciences.

[59]  H. Panepucci,et al.  Characterization by Multinuclear High‐Resolution NMR of Hydration Products in Activated Blast‐Furnace Slag Pastes , 2003 .

[60]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[61]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[62]  S. López Advances in near-neutral salts activation of blast furnace slags , 2016 .

[63]  L. Diamond,et al.  Solubility and Thermodynamic Properties of Carbonate-Bearing Hydrotalcite—Pyroaurite Solid Solutions with A 3:1 Mg/(Al+Fe) Mole Ratio , 2011 .

[64]  Neil B. Milestone,et al.  The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals , 2011 .