(57)Fe ENDOR spectroscopy on the iron-sulfur cluster involved in substrate reduction of heterodisulfide reductase.

Heterodisulfide reductase (Hdr) from methanogenic archea is an iron-sulfur protein that catalyzes the reversible two-electron reduction of the mixed disulfide CoM-S-S-CoB to the thiol coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). It is unusual that this enzyme uses an iron-sulfur cluster to mediate disulfide reduction in two one-electron steps via site-specific cluster chemistry. Upon half-reaction of the oxidized enzyme with CoM-SH in the absence of CoB-SH, an iron-based paramagnetic intermediate is formed, designated CoM-Hdr. In this Communication we report 57Fe pulsed ENDOR at two very different frequencies, 9 and 94 GHz, that identify the iron sites of CoM-Hdr. We find direct evidence for a [4Fe-4S]3+ cluster, and we determine the sign of the 57Fe hyperfine couplings. The 57Fe isotropic hfc values suggest a complex interaction between the cluster and the CoM-SH substrate.