LIGO: The laser interferometer gravitational-wave observatory

LIGO is a trio of extremely sensitive Michelson interferometers built to detect gravitational waves from space. We describe predicted sources of gravitational waves, our detectors, and the results of our recent observations.

Joshua R. Smith | P. Willems | C. Broeck | J. Dueck | M. Satterthwaite | J. Worden | S. Babak | J. Cannizzo | S. Fairhurst | A. Heptonstall | P. Sarin | W. Kells | A. Khalaidovski | J. Kissel | K. Kokeyama | V. Kondrashov | D. Kozak | B. Krishnan | M. Landry | B. Lantz | A. Lazzarini | T. Littenberg | N. Lockerbie | M. Lormand | H. Lück | B. Machenschalk | M. Macinnis | M. Mageswaran | I. Mandel | V. Mandic | A. Markosyan | E. Maros | R. Martin | J. Marx | F. Matichard | L. Matone | N. Mavalvala | A. Melatos | G. Mendell | S. Meshkov | C. Messenger | J. Miller | V. Mitrofanov | G. Mitselmakher | R. Mittleman | S. Mohapatra | G. Moreno | K. Mossavi | G. Mueller | S. Mukherjee | A. Mullavey | J. Munch | P. Murray | G. Newton | E. Ochsner | G. Ogin | D. Ottaway | R. Ottens | H. Overmier | B. Owen | C. Pankow | M. Papa | M. Pedraza | S. Penn | V. Pierro | M. Pitkin | M. Principe | L. Prokhorov | F. Raab | D. Rabeling | H. Radkins | P. Raffai | M. Rakhmanov | V. Raymond | C. Reed | S. Reid | K. Riles | J. Rollins | J. Romano | J. Romie | S. Rowan | A. Rüdiger | V. Sandberg | P. Saulson | R. Savage | R. Schilling | R. Schnabel | R. Schofield | J. Scott | D. Sellers | B. Shapiro | P. Shawhan | X. Siemens | D. Sigg | B. Slagmolen | N. Smith | B. Sorazu | R. Stone | S. Strigin | A. Stuver | P. Sutton | D. Talukder | S. Tarabrin | K. Thorne | C. Torres | C. Torrie | G. Traylor | D. Ugolini | H. Vahlbruch | S. Vass | R. Vaulin | R. Biswas | H. Lin | R. Abbott | R. Adhikari | P. Ajith | W. Anderson | M. Araya | S. Aston | P. Aufmuth | P. Baker | S. Ballmer | D. Barker | B. Barr | L. Barsotti | I. Bartos | R. Bassiri | J. Betzwieser | I. Bilenko | G. Billingsley | J. Blackburn | R. Bork | V. Boschi | S. Bose | A. Brooks | A. Buonanno | L. Cadonati | J. Camp | S. Caride | S. Caudill | M. Cavaglià | P. Charlton | Y. Chen | N. Christensen | N. Cornish | D. Coward | J. Creighton | T. Creighton | A. Cumming | L. Cunningham | K. Danzmann | E. Daw | D. DeBra | J. Degallaix | R. DeSalvo | M. Díaz | F. Donovan | A. Effler | P. Ehrens | Z. Frei | A. Freise | P. Fritschel | M. Fyffe | E. Goetz | G. González | R. Gouaty | A. Grant | S. Gras | C. Gray | H. Grote | S. Grunewald | R. Gustafson | G. Hammond | C. Hanna | J. Hanson | J. Harms | G. Harry | I. Harry | K. Haughian | I. Heng | S. Hild | D. Hoak | K. Holt | B. Hughey | S. Huttner | D. Jones | R. Jones | L. Ju | V. Kalogera | S. Kandhasamy | J. Kanner | K. Kawabe | R. Kumar | M. Mehmet | B. O'reilly | R. O’Shaughnessy | K. Ryan | A. Sengupta | D. Shoemaker | K. Strain | A. Vecchio | J. Veitch | P. Veitch | C. Vorvick | L. Wallace | R. Ward | M. Weinert | A. Weinstein | K. Wette | B. Willke | W. Winkler | G. Woan | M. Zanolin | J. Zhang | M. Zucker | J. Zweizig | L. Finn | G. Allen | B. Sathyaprakash | L. Wen | J. Whelan | B. Allen | C. Aulbert | B. Behnke | T. Bodiya | C. Cepeda | T. Chalermsongsak | V. Dergachev | R. Drever | T. Fricke | K. Giardina | K. Hodge | D. Hosken | T. Isogai | W. Johnson | E. Katsavounidis | F. Kawazoe | J. O'Dell | I. Pinto | K. Tokmakov | M. V. van der Sluys | A. A. van Veggel | R. Prix | S. Whitcomb | S. Anderson | D. Hoyland | P. Lam | J R Smith | D. Coyne | V. Frolov | K. Mason | D. Reitze | M. Barton | V. Braginsky | K. Hayama | E. Hirose | S. Kawamura | O. Miyakawa | K. Somiya | M. Lubinski | L. Blackburn | S. Foley | T. Etzel | S. Gossler | R. Greenhalgh | A. Gretarsson | E. Gustafson | M. Hewitson | M. Edgar | J. Brau | T. Cokelaer | J. Heefner | D. Lodhia | A. Wiseman | I. Wilmut | T. Nash | S. Koranda | D. Hammer | V. Sannibale | G. Castaldi | V. Galdi | H. Müller-Ebhardt | H. Rehbein | M. Vallisneri | P. Brady | R. Byer | T. Corbitt | F. Khalili | N. Leindecker | C. Veltkamp | P. Kwee | P. King | L. Winkelmann | D. Clark | P. Willems | P. Beyersdorf | B. Bland | D. Bridges | C. Y. Chung | B. Daudert | A. Dietz | J. Dumas | D. Fazi | N. Fotopoulos | M. Frei | J. Giaime | S. Giampanis | P. Kalmus | K. Mailand | B. Moe | F. Postiglione | T. Reed | R. Riesen | S. Roddy | L. Santamaría | P. Schwinberg | J. Slutsky | S. Steplewski | A. Stochino | C. Wilkinson | R. Wooley | I. Yakushin | N. Zotov | C. Röver | D. Kasprzyk | S. Wen | Z. Yan | J. R. Taylor | K. Numata | J. Hough | C. Colacino | M. Lei | K. Sun | B. Hage | A. Sergeev | A. Searle | Y. Aso | D. Blair | M. Brinkmann | S. Danilishin | S. Dhurandhar | K. Dooley | M. Evans | R. Frey | S. Klimenko | I. Martin | R. McCarthy | N. Robertson | B. Schutz | S. Scott | A. Sintes | T. Summerscales | D. Tanner | B. Whiting | C. Wipf | R. Grosso | J. Dwyer | Z. Raics | R. Conte | S. Chelkowski | A. Franzen | S. Sinha | K. Urbanek | R. Kopparapu | M. Sung | R. Amin | M. Arain | H. Armandula | P. Armor | C. Barker | P. Barriga | M. Bastarrika | L. Bogue | G. Brunet | A. Bullington | O. Burmeister | K. Cannon | E. Chalkley | S. Chatterji | G. Davies | E. Doomes | I. Duke | C. Echols | E. Espinoza | K. Flasch | I. Gholami | L. Goggin | F. Grimaldi | M. Guenther | M. Ito | B. Johnson | D. Keppel | I. Leonor | P. Lindquist | P. Lu | A. Lucianetti | J. Markowitz | M. McHugh | D. McKechan | A. Melissinos | R. Mercer | J. Minelli | H. Mukhopadhyay | E. Myers | J. Myers | J. Nelson | V. Parameshwaraiah | P. Patel | N. Rainer | B. Rivera | C. Robinson | S. Sakata | S. Saraf | P. Savov | B. Sears | A. Sibley | J. Thacker | A. Thüring | M. Trias | J. Ulmen | A. Villar | H. R. Williams | W. Wu | K. Goda | M. Benacquista | J. Clayton | Y. Fan | J. Hallam | D. Menéndez | M. Meyer | M. Plissi | A. Stein | S. Waldman | R. Khan | A. Weidner | B. Sathyaprakash | V. Quetschke | H. Lei | R. Culter | C. Forrest | M. Gorodetsky | T. Morioka | K. Mors | H. Yamamoto | S. Desai | B. Schulz | E. Harstad | C. Mowlowry | P. Roberts | E. Robinson | S. Vyachanin | L. Tang | A. Cruise | S. Mohanty | L. Stein | A. Stroeer | S. Yoshida | M. Frede | E. Khazanov | R. Matzner | D. McClelland | H. Pletsch | K. McKenzie | A. Nishizawa | J. Clark | G. Jones | H. Z. Mühlen | B. Abbott | J. Garofoli | S. Márka | M. Gray | C. Chung | A. Brummit | S. Sato | M. Longo | E. Black | L. Cárdenas | D. Cook | P. Russell | L. S. de la Jordana | F. Seifert | T. Evans | G. Szokoly | R. Weiss | Y. Faltas | C. Li | D. Muhammad | A. Perraca | O. Punken | H. Fehrmenn | Y. Mino | M. Scanlan | Y. Pan | D. Brown | Z. Márka | J. Cao | C. Zhao | M. Smith | S. Mcguire | G. Mcintyre | L. Zhang | R. Taylor | A. Ivanov | D. Ingram | L. Williams | A. Cumming | R. Jones | K. Kawabe | J. Miller | L. Williams | H. Yamamoto | A. Ivanov | J. Miller | L. Zhang | H. Yamamoto | L. Williams | M. Evans | A. van Veggel | D. Jones | G. Hammond | K. Holt | J. Kissel | M. Landry | B. Lantz | K. Mason | R. McCarthy | R. Mccarthy | B. O’Reilly | M. van der Sluys

[1]  R L Byer,et al.  Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry--Perot ring-cavity premode cleaner. , 1998, Optics letters.

[2]  B. S. Sathyaprakash,et al.  A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.

[3]  D. McClelland,et al.  Analysis of light noise sources in a recycled Michelson interferometer with Fabry-Perot arms. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Ryutaro Takahashi,et al.  Status of TAMA300 , 2004 .

[5]  L. Pinard,et al.  Scattered light noise in gravitational wave interferometric detectors: A statistical approach , 1997 .

[6]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[7]  A. Rodriguez Reducing False Alarms in Searches for Gravitational Waves from Coalescing Binary Systems , 2008, 0802.1376.

[8]  M. Zucker,et al.  Measurement of optical path fluctuations due to residual gas in the LIGO 40-meter interferometer , 1994 .

[9]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[10]  L. Blanchet Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[11]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[12]  J. Creighton Search techniques for gravitational waves from black-hole ringdowns , 1999, gr-qc/9901084.

[13]  et al,et al.  Upper limit map of a background of gravitational waves (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (082003)) , 2007, astro-ph/0703234.

[14]  D. Farrant,et al.  Fabrication and measurement of optics for the laser interferometer gravitational wave observatory. , 1999, Applied optics.

[15]  M. M. Casey,et al.  Limits on gravitational-wave emission from selected pulsars using LIGO data. , 2004, Physical review letters.

[16]  Kazuaki Kuroda The status of LCGT , 2006 .

[17]  M. M. Casey,et al.  Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory , 2007 .

[18]  Winkler,et al.  Nonstationary shot noise and its effect on the sensitivity of interferometers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[19]  E. Phinney,et al.  AN OVERVIEW OF GRAVITATIONAL-WAVE SOURCES , 2022 .

[20]  Winkler,et al.  Heating by optical absorption and the performance of interferometric gravitational-wave detectors. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[21]  Peter Fritschel,et al.  Alignment of an interferometric gravitational wave detector. , 1998, Applied optics.

[22]  Principles of calculating alignment signals in complex resonant optical interferometers , 1997 .

[23]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[24]  M. Loupias,et al.  The Virgo status , 2006 .

[25]  Bernard F. Schutz,et al.  Status of the GEO600 detector , 2006 .

[26]  S. Klimenko,et al.  Search for Gravitational Wave Bursts from Soft Gamma Repeaters , 2008, 0808.2050.

[27]  et al,et al.  Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.

[28]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.

[29]  Robert Eliot Spero,et al.  The Laser Interferometer Gravitational-wave Observatory (LIGO) , 1995 .

[30]  Alban Remillieux,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006 .

[31]  Christian D. Ott,et al.  The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.

[32]  S. Márka,et al.  Benefits of artificially generated gravity gradients for interferometric gravitational-wave detectors , 2007, gr-qc/0701134.

[33]  M. M. Casey,et al.  Search for gravitational-wave bursts in LIGO data from the fourth science run , 2007, 0704.0943.

[34]  M. M. Casey,et al.  Upper limits on gravitational wave bursts in LIGO's second science run , 2005 .

[35]  Vol Xiii,et al.  Astronomical Society of the Pacific , 1937, Nature.

[36]  Upper limits on a stochastic background of gravitational waves. , 2005, Physical review letters.

[37]  W. Kells,et al.  Lock acquisition of a gravitational-wave interferometer. , 2002, Optics letters.

[38]  A. Gillespie,et al.  Suspension losses in the pendula of laser interferometer gravitational-wave detectors , 1994 .

[39]  M. M. Casey,et al.  All-sky search for periodic gravitational waves in LIGO S4 data , 2007, 0708.3818.

[40]  B. Owen Maximum elastic deformations of compact stars with exotic equations of state. , 2005, Physical review letters.

[41]  M. M. Casey,et al.  Upper limits on gravitational wave emission from 78 radio pulsars (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (042001)) , 2007, gr-qc/0702039.

[42]  T. Hayler,et al.  Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run , 2006 .

[43]  The Relativistic binary pulsar B1913+16 , 2002, astro-ph/0211217.

[44]  L. S. Collaboration All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data , 2008, 0810.0283.

[45]  et al,et al.  First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform , 2005, gr-qc/0508065.

[46]  P. King,et al.  Diode-pumped Nd:yag Laser Intensity Noise Suppression Using a Current Shunt , 2022 .

[47]  Michael Perreur-Lloyd,et al.  Quadruple suspension design for Advanced LIGO , 2002 .

[48]  Gabriela Gonz'alez Suspensions thermal noise in the LIGO gravitational wave detector , 2000 .

[49]  B. J. Meers,et al.  Automatic alignment of optical interferometers. , 1994, Applied optics.

[50]  Fabio Marchesoni,et al.  Low-frequency internal friction in clamped-free thin wires , 1999 .

[51]  T. Cokelaer Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.

[52]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[53]  Bernard F. Schutz,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998 .

[54]  Reducing false alarms in searches for gravitational waves from coalescing binary systems , 2007 .

[55]  A. Heptonstall,et al.  Characterisation of mechanical loss in synthetic fused silica ribbons , 2006 .

[56]  J. Taylor,et al.  Relativistic binary pulsar B1913+16: Thirty years of observations and analysis , 2004, astro-ph/0407149.

[57]  Peter Fritschel,et al.  Second generation instruments for the Laser Interferometer Gravitational Wave Observatory (LIGO) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[58]  P. Fritschel,et al.  Effects of mode degeneracy in the LIGO Livingston Observatory recycling cavity , 2007, 0708.3470.

[59]  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[60]  M. M. Casey,et al.  Upper limits on gravitational wave emission from 78 radio pulsars (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (042001)) , 2007, gr-qc/0702039.

[61]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[62]  P J McCarthy,et al.  The afterglow of GRB 050709 and the nature of the short-hard gamma-ray bursts. , 2005, Nature.

[63]  W. Kells,et al.  In situ measurement of absorption in high-power interferometers by using beam diameter measurements. , 2006, Optics letters.

[64]  The LSC glitch group: monitoring noise transients during the fifth LIGO science run , 2008, 0804.0800.

[65]  D. C. Backer,et al.  Pulsar timing and general relativity , 1986 .

[66]  R. Adhikari,et al.  Sensitivity and noise analysis of 4 km laser interferometric gravitational wave antennae , 2004 .

[67]  Improvements in strain calibration for the third LIGO science run , 2005 .

[68]  D T Wei,et al.  Ion beam interference coating for ultralow optical loss. , 1989, Applied optics.

[69]  Christina Courtright,et al.  Context in information behavior research , 2007 .

[70]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[71]  Jeremy Faludi,et al.  Seismic isolation enhancements for initial and advanced LIGO , 2004 .

[72]  Analytic Black Hole Perturbation Approach to Gravitational Radiation , 2003, Living reviews in relativity.

[73]  Interferometric antenna response for gravitational-wave detection. , 1995, Applied optics.

[74]  Seiji Kawamura,et al.  Mirror-orientation noise in a Fabry-Perot interferometer gravitational wave detector. , 1994, Applied optics.

[75]  Cote,et al.  Self-organized criticality and the Barkhausen effect. , 1991, Physical review letters.

[76]  K. Cannon A Bayesian coincidence test for noise rejection in a gravitational-wave burst search , 2008 .

[77]  Joshua R. Smith,et al.  Implications for the origin of GRB 070201 from LIGO observations , 2007 .

[78]  B. Allen The Stochastic Gravity-Wave Background: Sources and Detection , 1996, gr-qc/9604033.

[79]  M. Rakhmanov,et al.  High-frequency corrections to the detector response and their effect on searches for gravitational waves , 2008, 0808.3805.

[80]  L. Sievers,et al.  A passive vibration isolation stack for LIGO: Design, modeling, and testing , 1996 .

[81]  B. J. Meers The frequency response of interferometric gravitational wave detectors , 1989 .

[82]  Jonathan P. How,et al.  Seismic isolation for Advanced LIGO , 2002 .

[83]  Bruce Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1999 .

[84]  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.

[85]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[86]  Bhal Chandra Joshi,et al.  THE COSMIC COALESCENCE RATES FOR DOUBLE NEUTRON STAR BINARIES , 2004 .

[87]  Benno Willke,et al.  Fundamental mode, single-frequency laser amplifier for gravitational wave detectors. , 2007, Optics express.

[88]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[89]  Massachusetts Institute of Technology,et al.  Frequency and surface dependence of the mechanical loss in fused silica , 2006 .

[90]  A radiometer for stochastic gravitational waves , 2005, gr-qc/0510096.

[91]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[92]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[93]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2005, Living reviews in relativity.

[94]  C. Ott,et al.  A new mechanism for gravitational-wave emission in core-collapse supernovae. , 2006, Physical review letters.

[95]  N. Mavalvala,et al.  Readout and control of a power-recycled interferometric gravitational-wave antenna. , 2001, Applied optics.

[96]  Vicky Kalogera,et al.  Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events , 2007, 0706.1283.

[97]  M. Ramer,et al.  THE COSMIC COALESCENCE RATES FOR DOUBLE NEUTRON STAR BINARIES , 2004 .

[98]  Rank deficiency and Tikhonov regularization in the inverse problem for gravitational-wave bursts , 2006, gr-qc/0604005.

[99]  M. Regehr,et al.  Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms by frontal modulation. , 1995, Optics letters.

[100]  et al,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005 .

[101]  J. Font,et al.  Gravitational Waves from Relativistic Rotational Core Collapse , 2001, astro-ph/0103088.

[102]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[103]  P. Wessels,et al.  Stabilized lasers for advanced gravitational wave detectors , 2008 .

[104]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[105]  M. Landry,et al.  Calibration of the LIGO detectors for S3 , 2005 .

[106]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[107]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[108]  Brisson,et al.  Scattered light noise in gravitational wave interferometric detectors: Coherent effects. , 1996, Physical review. D, Particles and fields.

[109]  A. Grant,et al.  Test of an 18‐m‐long suspended modecleaner cavity , 1996 .