Study of the cold charge transfer state separation at the TQ1/PC71BM interface

Charge transfer (CT) state separation is one of the most critical processes in the functioning of an organic solar cell. In this article, we study a bilayer of TQ1 and PC71BM molecules presenting disorder at the interface, obtained by means of Molecular Dynamics. The study of the CT state splitting can be first analyzed through the CT state splitting diagram, introduced in a previous work. Through this analysis, we identify the possibility of CT state splitting within Marcus Theory in function of the electric field. Once the right range of electric fields has been identified, we perform Kinetic Monte Carlo simulations to estimate percentages and times for the CT state splitting and the free charge carriers collection. Statistical information extracted from these simulations allows us to highlight the importance of polarization and to test the limits of the predictions given by the CT state splitting diagram. © 2017 Wiley Periodicals, Inc.

[1]  C Zannoni,et al.  Theoretical characterization of the structural and hole transport dynamics in liquid-crystalline phthalocyanine stacks. , 2009, The journal of physical chemistry. B.

[2]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[3]  Thomas Strobel,et al.  Origin of the efficient polaron-pair dissociation in polymer-Fullerene blends. , 2009, Physical review letters.

[4]  C. Zannoni,et al.  Modeling Polymer Dielectric/Pentacene Interfaces: On the Role of Electrostatic Energy Disorder on Charge Carrier Mobility , 2009 .

[5]  Thomas Strobel,et al.  Role of the Charge Transfer State in Organic Donor–Acceptor Solar Cells , 2010, Advanced materials.

[6]  Christoph J. Brabec,et al.  Production Aspects of Organic Photovoltaics and Their Impact on the Commercialization of Devices , 2005 .

[7]  H. Bässler Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study , 1993 .

[8]  O. Inganäs,et al.  Lateral Phase Separation Gradients in Spin‐Coated Thin Films of High‐Performance Polymer:Fullerene Photovoltaic Blends , 2011 .

[9]  D. Beljonne,et al.  Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects. , 2016, The journal of physical chemistry letters.

[10]  C Zannoni,et al.  Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale. , 2013, Accounts of chemical research.

[11]  Alexander Lukyanov,et al.  Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors , 2011, Journal of chemical theory and computation.

[12]  E. Hauff The Role of Molecular Structure and Conformation in Polymer Electronics , 2011 .

[13]  David Beljonne,et al.  Charge separation energetics at organic heterojunctions: on the role of structural and electrostatic disorder. , 2014, Physical chemistry chemical physics : PCCP.

[14]  Kurt Kremer,et al.  Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene-alt-thienothiophene) [PBTTT] , 2013 .

[15]  Mathieu Linares,et al.  Transition fields in organic materials: from percolation to inverted Marcus regime. A consistent Monte Carlo simulation in disordered PPV. , 2015, The Journal of chemical physics.

[16]  J. Brédas,et al.  Molecular Understanding of Fullerene – Electron Donor Interactions in Organic Solar Cells , 2017 .

[17]  Kurt Kremer,et al.  Charge mobility of discotic mesophases: a multiscale quantum and classical study. , 2007, Physical review letters.

[18]  D. Beljonne,et al.  Do charges delocalize over multiple molecules in fullerene derivatives , 2016 .

[19]  Moon-Jong Han,et al.  Flexible, stretchable, and patchable organic devices integrated on freestanding polymeric substrates , 2015 .

[20]  Denis Andrienko,et al.  Design rules for organic donor-acceptor heterojunctions: pathway for charge splitting and detrapping. , 2015, Journal of the American Chemical Society.

[21]  James Kirkpatrick,et al.  A multiscale description of charge transport in conjugated oligomers. , 2010, The Journal of chemical physics.

[22]  David Beljonne,et al.  Energetics of Electron–Hole Separation at P3HT/PCBM Heterojunctions , 2013 .

[23]  David Beljonne,et al.  Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[25]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[26]  Denis Andrienko,et al.  Long-Range Embedding of Molecular Ions and Excitations in a Polarizable Molecular Environment. , 2016, Journal of chemical theory and computation.

[27]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[28]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene , 1980 .

[29]  O. Inganäs,et al.  Charge Transfer States in Organic Donor-Acceptor Solar Cells , 2011 .

[30]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[31]  Sathish Kottravel,et al.  Effect of Polarization on the Mobility of C60: A Kinetic Monte Carlo Study. , 2016, Journal of chemical theory and computation.

[32]  J. Idé,et al.  Supramolecular organization and charge transport properties of self-assembled π-π stacks of perylene diimide dyes. , 2011, The journal of physical chemistry. B.

[33]  James Kirkpatrick An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian , 2006 .

[34]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[35]  N. Vukmirović,et al.  Effects of thermal disorder on the electronic properties of ordered polymers. , 2014, Physical chemistry chemical physics : PCCP.

[36]  P. Heremans,et al.  On the interface dipole at the pentacene-fullerene heterojunction : A theoretical study , 2010 .

[37]  A. Troisi,et al.  Why Holes and Electrons Separate So Well in Polymer/Fullerene Photovoltaic Cells , 2011 .

[38]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[39]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[40]  J. Brédas,et al.  Charge hopping in organic semiconductors: influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks. , 2006, The journal of physical chemistry. A.

[41]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[42]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[43]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[44]  D. Gundlach,et al.  Organic electronics. Low power, high impact. , 2007, Nature materials.

[45]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[46]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[47]  O. Inganäs,et al.  An Easily Synthesized Blue Polymer for High‐Performance Polymer Solar Cells , 2010, Advanced materials.

[48]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[49]  Jie Li,et al.  Development of polarizable models for molecular mechanical calculations I: parameterization of atomic polarizability. , 2011, The journal of physical chemistry. B.

[50]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[51]  M. Linares,et al.  Theoretical Study of the Charge-Transfer State Separation within Marcus Theory: The C60-Anthracene Case Study. , 2016, ACS applied materials & interfaces.

[52]  David Beljonne,et al.  Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C60 Heterojunctions , 2009 .

[53]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[54]  O. Inganäs,et al.  Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells , 2015, Nature Communications.

[55]  S. Lifson,et al.  Potential functions and conformations in cycloalkanes , 1967 .

[56]  Alessandro Troisi,et al.  Charge transport in organic crystals: role of disorder and topological connectivity. , 2010, Journal of the American Chemical Society.

[57]  B. Engels,et al.  Structure–Property Relationships from Atomistic Multiscale Simulations of the Relevant Processes in Organic Solar Cells. I. Thermodynamic Aspects , 2017 .

[58]  J. Brédas,et al.  Molecular understanding of organic solar cells: the challenges. , 2009, Accounts of chemical research.

[59]  Mathieu Linares,et al.  Monte Carlo simulations of charge transport in organic systems with true off-diagonal disorder. , 2012, The Journal of chemical physics.