The Gibbs Paradox

The Gibbs Paradox is essentially a set of open questions as to how sameness of gases or fluids (or masses, more generally) are to be treated in thermodynamics and statistical mechanics. They have a variety of answers, some restricted to quantum theory (there is no classical solution), some to classical theory (the quantum case is different). The solution offered here applies to both in equal measure, and is based on the concept of particle indistinguishability (in the classical case, Gibbs’ notion of ‘generic phase’). Correctly understood, it is the elimination of sequence position as a labelling device, where sequences enter at the level of the tensor (or Cartesian) product of one-particle state spaces. In both cases it amounts to passing to the quotient space under permutations. ‘Distinguishability’, in the sense in which it is usually used in classical statistical mechanics, is a mathematically convenient, but physically muddled, fiction.

[1]  J. Myrheim,et al.  On the theory of identical particles , 1977 .

[2]  Are all particles identical , 2004, quant-ph/0405039.

[3]  S. Saunders On the Emergence of Individuals in Physics , 2015 .

[4]  P. Ehrenfest Welche Züge der Lichtquantenhypothese spielen in der Theorie der Wärmestrahlung eine wesentliche Rolle , 1911 .

[5]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[6]  Sir Joseph Larmor F.R.S. XXXII. On the statistical theory of radiation , 1910 .

[7]  Dennis Dieks,et al.  How Classical Particles Emerge From the Quantum World , 2010, 1002.2544.

[8]  Maria Carla Galavotti,et al.  The Philosophy of Science in a European Perspective , 2009 .

[9]  E. Jaynes The Gibbs Paradox , 1992 .

[10]  Indistinguishable classical particles , 1996 .

[11]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[12]  L. Natanson,et al.  Über die statistische Theorie der Strahlung = On the statistical theory of radiation , 1911 .

[13]  Dennis Dieks,et al.  The Gibbs Paradox and Particle Individuality , 2018, Entropy.

[14]  Olivier Darrigol,et al.  The Gibbs Paradox: Early History and Solutions , 2018, Entropy.

[15]  Abraham Pais,et al.  ‘Subtle Is the Lord …’: The Science and the Life of Albert Einstein by Abraham Pais (review) , 1984 .

[16]  D. Hestenes Entropy and Indistinguishability , 1970 .

[17]  D. Wallace The Logic of the Past Hypothesis , 2011 .

[18]  M. Redhead,et al.  Gibbs' paradox and non-uniform convergence , 1989, Synthese.

[19]  W. PEDDIE,et al.  The Scientific Papers of James Clerk Maxwell , 1927, Nature.

[20]  Dennis Dieks,et al.  The Gibbs paradox and the distinguishability of identical particles , 2010, 1012.4111.

[21]  S. Fujita On the indistinguishability of classical particles , 1991 .

[22]  D. Wallace The Emergent Multiverse: Quantum Theory according to the Everett Interpretation , 2012 .

[23]  On the explanation for quantum statistics , 2005, quant-ph/0511136.

[24]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[25]  O. Wiedeburg Das Gibbs'sche Paradoxon , 1894 .

[26]  P. Ehrenfest Deduction of the dissociation-equilibrium from the theory of quanta and a calculation of the chemical constant based on this , 2022 .

[27]  Domenico Giulini,et al.  The Physical Basis of the Direction of Time , 2008 .

[28]  Robert W. Batterman,et al.  The Oxford Handbook of Philosophy of Physics , 2013 .

[29]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[30]  Vinothan N Manoharan,et al.  Celebrating Soft Matter's 10th anniversary: Testing the foundations of classical entropy: colloid experiments. , 2015, Soft matter.

[31]  H. Onnes,et al.  XXXIII. Simplified deduction of the formula from the theory of combinations which Planck uses as the basis of his radiation theory , 1915 .

[32]  James Clerk Maxwell,et al.  Introductory Lecture on Experimental Physics , 2011 .

[33]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[34]  Robert H. Swendsen,et al.  Statistical Mechanics of Classical Systems with Distinguishable Particles , 2002 .

[35]  S. Strauss The Oxford Handbook Of Philosophy Of Physics , 2016 .

[36]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[37]  D. Dieks The Gibbs Paradox Revisited , 2010, 1003.0179.

[38]  Pierre Maurice Marie Duhem Sur la dissociation dans les systèmes qui renferment un mélange de gaz parfaits , 2015 .

[39]  Dennis Dieks,et al.  The Logic of Identity: Distinguishability and Indistinguishability in Classical and Quantum Physics , 2014, 1405.3280.

[40]  Robert H. Swendsen,et al.  Probability, Entropy, and Gibbs’ Paradox(es) , 2018, Entropy.