The Gibbs Paradox
暂无分享,去创建一个
[1] J. Myrheim,et al. On the theory of identical particles , 1977 .
[2] Are all particles identical , 2004, quant-ph/0405039.
[3] S. Saunders. On the Emergence of Individuals in Physics , 2015 .
[4] P. Ehrenfest. Welche Züge der Lichtquantenhypothese spielen in der Theorie der Wärmestrahlung eine wesentliche Rolle , 1911 .
[5] H. Bhadeshia. Diffusion , 1995, Theory of Transformations in Steels.
[6] Sir Joseph Larmor F.R.S.. XXXII. On the statistical theory of radiation , 1910 .
[7] Dennis Dieks,et al. How Classical Particles Emerge From the Quantum World , 2010, 1002.2544.
[8] Maria Carla Galavotti,et al. The Philosophy of Science in a European Perspective , 2009 .
[9] E. Jaynes. The Gibbs Paradox , 1992 .
[10] Indistinguishable classical particles , 1996 .
[11] J. Gibbs. On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.
[12] L. Natanson,et al. Über die statistische Theorie der Strahlung = On the statistical theory of radiation , 1911 .
[13] Dennis Dieks,et al. The Gibbs Paradox and Particle Individuality , 2018, Entropy.
[14] Olivier Darrigol,et al. The Gibbs Paradox: Early History and Solutions , 2018, Entropy.
[15] Abraham Pais,et al. ‘Subtle Is the Lord …’: The Science and the Life of Albert Einstein by Abraham Pais (review) , 1984 .
[16] D. Hestenes. Entropy and Indistinguishability , 1970 .
[17] D. Wallace. The Logic of the Past Hypothesis , 2011 .
[18] M. Redhead,et al. Gibbs' paradox and non-uniform convergence , 1989, Synthese.
[19] W. PEDDIE,et al. The Scientific Papers of James Clerk Maxwell , 1927, Nature.
[20] Dennis Dieks,et al. The Gibbs paradox and the distinguishability of identical particles , 2010, 1012.4111.
[21] S. Fujita. On the indistinguishability of classical particles , 1991 .
[22] D. Wallace. The Emergent Multiverse: Quantum Theory according to the Everett Interpretation , 2012 .
[23] On the explanation for quantum statistics , 2005, quant-ph/0511136.
[24] GianCarlo Ghirardi,et al. General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .
[25] O. Wiedeburg. Das Gibbs'sche Paradoxon , 1894 .
[26] P. Ehrenfest. Deduction of the dissociation-equilibrium from the theory of quanta and a calculation of the chemical constant based on this , 2022 .
[27] Domenico Giulini,et al. The Physical Basis of the Direction of Time , 2008 .
[28] Robert W. Batterman,et al. The Oxford Handbook of Philosophy of Physics , 2013 .
[29] J. Neumann. Mathematical Foundations of Quantum Mechanics , 1955 .
[30] Vinothan N Manoharan,et al. Celebrating Soft Matter's 10th anniversary: Testing the foundations of classical entropy: colloid experiments. , 2015, Soft matter.
[31] H. Onnes,et al. XXXIII. Simplified deduction of the formula from the theory of combinations which Planck uses as the basis of his radiation theory , 1915 .
[32] James Clerk Maxwell,et al. Introductory Lecture on Experimental Physics , 2011 .
[33] Luca Marinatto,et al. Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .
[34] Robert H. Swendsen,et al. Statistical Mechanics of Classical Systems with Distinguishable Particles , 2002 .
[35] S. Strauss. The Oxford Handbook Of Philosophy Of Physics , 2016 .
[36] Aarnout Brombacher,et al. Probability... , 2009, Qual. Reliab. Eng. Int..
[37] D. Dieks. The Gibbs Paradox Revisited , 2010, 1003.0179.
[38] Pierre Maurice Marie Duhem. Sur la dissociation dans les systèmes qui renferment un mélange de gaz parfaits , 2015 .
[39] Dennis Dieks,et al. The Logic of Identity: Distinguishability and Indistinguishability in Classical and Quantum Physics , 2014, 1405.3280.
[40] Robert H. Swendsen,et al. Probability, Entropy, and Gibbs’ Paradox(es) , 2018, Entropy.