Computational multiscale methods for quasi-gas dynamic equations

In this paper, we consider the quasi-gas-dynamic (QGD) model in a multiscale environment. The model equations can be regarded as a hyperbolic regularization and are derived from kinetic equations. So far, the research on QGD models has been focused on problems with constant coefficients. In this paper, we investigate the QGD model in multiscale media, which can be used in porous media applications. This multiscale problem is interesting from a multiscale methodology point of view as the model problem has a hyperbolic multiscale term, and designing multiscale methods for hyperbolic equations is challenging. In the paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) combined with the leapfrog scheme in time to solve this problem. The CEM-GMsFEM provides a flexible and systematical framework to construct crucial multiscale basis functions for approximating the solution to the problem with reduced computational cost. With this approach of spatial discretization, we establish the stability of the fully discretized scheme under a relaxed version of the so-called CFL condition. Complete convergence analysis of the proposed method is presented. Numerical results are provided to illustrate and verify the theoretical findings.

[1]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[2]  Giovanni Samaey,et al.  Patch dynamics with buffers for homogenization problems , 2006, J. Comput. Phys..

[3]  Assyr Abdulle,et al.  Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..

[4]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[5]  A. V. Saveliev,et al.  Compact Quasi-Gasdynamic System for High-Performance Computations , 2019, Computational Mathematics and Mathematical Physics.

[6]  Yalchin Efendiev,et al.  Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media , 2014, J. Comput. Phys..

[7]  Wing Tat Leung,et al.  Goal-oriented adaptivity for GMsFEM , 2015, J. Comput. Appl. Math..

[8]  Ioannis G. Kevrekidis,et al.  General Tooth Boundary Conditions for Equation Free Modeling , 2006, SIAM J. Sci. Comput..

[9]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Methods for Wave Propagation in Heterogeneous Media , 2013, Multiscale Model. Simul..

[10]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[11]  Shuyu Sun,et al.  Homogenization of two-phase fluid flow in porous media via volume averaging , 2019, J. Comput. Appl. Math..

[12]  Frédéric Legoll,et al.  An MsFEM Type Approach for Perforated Domains , 2013, Multiscale Model. Simul..

[13]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[14]  Guanglian Li,et al.  Edge multiscale methods for elliptic problems with heterogeneous coefficients , 2018, J. Comput. Phys..

[15]  Yalchin Efendiev,et al.  Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods , 2016, J. Comput. Phys..

[16]  Natalia G. Churbanova,et al.  Application of kinetic approach to porous medium flow simulation in environmental hydrology problems on high-performance computing systems , 2016 .

[17]  Giovanni Samaey,et al.  The Gap-Tooth Scheme for Homogenization Problems , 2005, Multiscale Model. Simul..

[18]  Yalchin Efendiev,et al.  Fast online generalized multiscale finite element method using constraint energy minimization , 2017, J. Comput. Phys..

[19]  Yalchin Efendiev,et al.  Constraint energy minimizing generalized multiscale finite element method for dual continuum model , 2018, Communications in Mathematical Sciences.

[20]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[21]  P. Henning,et al.  A localized orthogonal decomposition method for semi-linear elliptic problems , 2012, 1211.3551.

[22]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[23]  Shuyu Sun,et al.  HOMOGENIZE COUPLED STOKES–CAHN–HILLIARD SYSTEM TO DARCY'S LAW FOR TWO-PHASE FLUID FLOW IN POROUS MEDIUM BY VOLUME AVERAGING , 2019, Journal of Porous Media.

[24]  Yalchin Efendiev,et al.  Non-local multi-continua upscaling for flows in heterogeneous fractured media , 2017, J. Comput. Phys..

[25]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[26]  Boris N. Chetverushkin,et al.  Kinetic schemes and quasi-gas-dynamic system of equations , 2005 .

[27]  A. E. Lutskii,et al.  Compact Version of the Quasi-Gasdynamic System for Modeling a Viscous Compressible Gas , 2019, Differential Equations.

[28]  Patrick Jenny,et al.  A hierarchical fracture model for the iterative multiscale finite volume method , 2011, J. Comput. Phys..

[29]  Yalchin Efendiev,et al.  An Efficient Hierarchical Multiscale Finite Element Method for Stokes Equations in Slowly Varying Media , 2013, Multiscale Model. Simul..

[30]  Jacob Fish,et al.  Computational continua for linear elastic heterogeneous solids on unstructured finite element meshes , 2018 .

[31]  Boris N. Chetverushkin,et al.  On a hyperbolic perturbation of a parabolic initial-boundary value problem , 2018, Appl. Math. Lett..

[32]  Jacob Fish,et al.  Multiscale enrichment based on partition of unity , 2005 .

[33]  Yalchin Efendiev,et al.  Mixed Generalized Multiscale Finite Element Methods and Applications , 2014, Multiscale Model. Simul..

[34]  F. Legoll,et al.  Multiscale Finite Element approach for "weakly" random problems and related issues , 2011, 1111.1524.

[35]  B. N. Chetverushkin,et al.  Kinetic Model and Magnetogasdynamics Equations , 2018 .

[36]  Shuyu Sun,et al.  Flow and Transport in Porous Media: A Multiscale Focus , 2017 .

[37]  Yalchin Efendiev,et al.  Constraint energy minimizing generalized multiscale finite element method in the mixed formulation , 2017, Computational Geosciences.

[38]  Benjamin Stamm,et al.  An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation , 2014, 1412.6347.

[39]  Viet Ha Hoang,et al.  High dimensional finite element method for multiscale nonlinear monotone parabolic equations , 2019, J. Comput. Appl. Math..