Large adiabatic temperature rise above the water ice point of a minor Fe substituted Gd 50 Co 50 amorphous alloy

[1]  L. Xia,et al.  Near room temperature magneto-caloric effect of a Gd48Co52 amorphous alloy , 2016 .

[2]  L. Xia,et al.  Achieving better magneto-caloric effect near room temperature in amorphous Gd50Co50 alloy by minor Zn addition , 2016 .

[3]  H. Bai,et al.  Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon , 2016 .

[4]  S. H. Chen,et al.  Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water , 2015 .

[5]  M. L. Fdez-Gubieda,et al.  High-magnetic field characterization of magnetocaloric effect in FeZrB(Cu) amorphous ribbons , 2015 .

[6]  L. Xia,et al.  Magneto-caloric response of the Gd60Co25Al15 metallic glasses , 2014 .

[7]  Y. Dong,et al.  Large magnetic entropy change and adiabatic temperature rise of a Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass , 2014 .

[8]  F. Qin,et al.  Excellent magnetocaloric properties of melt-extracted Gd-based amorphous microwires , 2012 .

[9]  B. Shen,et al.  Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses , 2012 .

[10]  J. Araújo,et al.  On the Curie temperature dependency of the magnetocaloric effect , 2012 .

[11]  P. Ranke,et al.  Theoretical aspects of the magnetocaloric effect , 2010 .

[12]  Jirong Sun,et al.  Room-temperature large refrigerant capacity of Gd6Co2Si3 , 2009 .

[13]  Y. B. Li,et al.  Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses , 2008 .

[14]  V. Franco,et al.  Enhanced magnetocaloric response in Cr∕Mo containing Nanoperm-type amorphous alloys , 2007 .

[15]  M. Stoica,et al.  Refrigerant capacity of FeCrMoCuGaPCB amorphous alloys , 2006 .

[16]  Weihua Wang,et al.  Magnetocaloric effect in Gd-based bulk metallic glasses , 2006 .

[17]  Mahmud Tareq Hassan Khan,et al.  Magnetocaloric Properties of Ni2Mn1−xCuxGa , 2006 .

[18]  E. Brück,et al.  Developments in magnetocaloric refrigeration , 2005 .

[19]  S. Atalay,et al.  Magnetic entropy change in Fe74−xCrxCu1Nb3Si13B9 (x = 14 and 17) amorphous alloys , 2005 .

[20]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[21]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[22]  F. Hu,et al.  Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1 , 2002 .

[23]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[24]  M. Ibarra,et al.  Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compoundsGd5(SixGe1−x)4 , 2000 .

[25]  J. Glanz Making a Bigger Chill With Magnets , 1998, Science.

[26]  S. Chikazumi Physics of ferromagnetism , 1997 .

[27]  F. Parker,et al.  Magnetic cooling near Curie temperatures above 300 K , 1984 .

[28]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .