The Arecibo Dual-Beam Survey: The H I Mass Function of Galaxies

We use the H I-selected galaxy sample from the Arecibo Dual-Beam Survey of Rosenberg and Schneider to determine the shape of the H I mass function of galaxies in the local universe using both the stepwise maximum likelihood and the 1/tot methods. Our survey region spanned all 24 hours of right ascension at selected declinations between 8° and 29° covering ~430 deg2 of sky in the main beam. The survey is not as deep as some previous Arecibo surveys, but it has a larger total search volume and samples a much larger area of the sky. We conducted extensive tests on all aspects of the galaxy detection process, allowing us to empirically correct for our sensitivity limits, unlike the previous surveys. The mass function for the entire sample is quite steep, with a power-law slope of α ≈ -1.5. We find indications that the slope of the H I mass function is flatter near the Virgo Cluster, suggesting that evolutionary effects in high-density environments may alter the shape of the H I mass function. These evolutionary effects may help to explain differences in the H I mass function derived by different groups. We are sensitive to the most massive sources (log M > 5 × 1010 M☉) over most of the declination range, ~1 sr, and do not detect any massive low surface brightness galaxies. These statistics restrict the population of Malin 1-like galaxies to less than 5.5 × 10-6 Mpc-3.

[1]  M. Zwaan,et al.  The H I Mass Function of Galaxies from a Deep Survey in the 21 Centimeter Line , 1997, astro-ph/9707109.

[2]  S. Schneider,et al.  A Deep Survey of H I-selected Galaxies: The Sample and the Data , 1998, astro-ph/9811336.

[3]  J. Loveday The Local Space Density of Dwarf Galaxies , 1997, astro-ph/9703022.

[4]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[5]  S. Burles,et al.  The Deuterium Abundance towards QSO 1009+2956 , 1997 .

[6]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[7]  S. L. Morris,et al.  The CNOC2 Field Galaxy Luminosity Function. I. A Description of Luminosity Function Evolution , 1999 .

[8]  B. Gibson,et al.  New Galaxies Discovered in the First Blind H I Survey of the Centaurus A Group , 1999, astro-ph/9906146.

[9]  S. Penton,et al.  The Local Lyα Forest. II. Distribution of H I Absorbers,Doppler Widths, and Baryon Content , 1999, astro-ph/9911128.

[10]  I. Karachentsev,et al.  observations of nearby galaxies , 2000 .

[11]  S. Driver,et al.  The Luminosity Distribution in Galaxy Clusters: A Dwarf Population-Density Relation? , 1998, astro-ph/9804244.

[12]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[13]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[14]  J. Mould,et al.  Discovery of a huge low-surface-brightness galaxy - a protodisk galaxy at low redshift , 1987 .

[15]  S. Schneider,et al.  The Arecibo Dual-Beam Survey: Arecibo and VLA Observations , 2000, astro-ph/0004205.

[16]  Richard S. Ellis,et al.  Analysis of a complete galaxy redshift survey – II. The field-galaxy luminosity function , 1988 .

[17]  F. Briggs,et al.  The Shape of the H i Mass Function for Late-Type Galaxies over the Range M H I 10 7--10 10 M sub sun , 1993 .

[18]  J. Tonry,et al.  The Surface Brightness Fluctuation Survey of Galaxy Distances. II. Local and Large-Scale Flows , 1999, astro-ph/9907062.

[19]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[20]  H. Lin,et al.  Evolution of the Galaxy Population Based on Photometric Redshifts in the Hubble Deep Field , 1997 .

[21]  C. Kochanek,et al.  The K-Band Galaxy Luminosity Function , 2000, astro-ph/0011456.