PixelGAN Autoencoders

In this paper, we describe the "PixelGAN autoencoder", a generative autoencoder in which the generative path is a convolutional autoregressive neural network on pixels (PixelCNN) that is conditioned on a latent code, and the recognition path uses a generative adversarial network (GAN) to impose a prior distribution on the latent code. We show that different priors result in different decompositions of information between the latent code and the autoregressive decoder. For example, by imposing a Gaussian distribution as the prior, we can achieve a global vs. local decomposition, or by imposing a categorical distribution as the prior, we can disentangle the style and content information of images in an unsupervised fashion. We further show how the PixelGAN autoencoder with a categorical prior can be directly used in semi-supervised settings and achieve competitive semi-supervised classification results on the MNIST, SVHN and NORB datasets.

[1]  David Barber,et al.  The IM algorithm: a variational approach to Information Maximization , 2003, NIPS 2003.

[2]  Hugo Larochelle,et al.  The Neural Autoregressive Distribution Estimator , 2011, AISTATS.

[3]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[4]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[5]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[6]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[7]  Oriol Vinyals,et al.  Towards Principled Unsupervised Learning , 2015, ArXiv.

[8]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[9]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[10]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[11]  Shin Ishii,et al.  Distributional Smoothing with Virtual Adversarial Training , 2015, ICLR 2016.

[12]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[13]  Shakir Mohamed,et al.  Learning in Implicit Generative Models , 2016, ArXiv.

[14]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[15]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[16]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[17]  Jost Tobias Springenberg,et al.  Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks , 2015, ICLR.

[18]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[19]  Antonio Valerio Miceli Barone Towards cross-lingual distributed representations without parallel text trained with adversarial autoencoders , 2016, Rep4NLP@ACL.

[20]  Ole Winther,et al.  Auxiliary Deep Generative Models , 2016, ICML.

[21]  Dustin Tran,et al.  Operator Variational Inference , 2016, NIPS.

[22]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[23]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[24]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[25]  Sebastian Nowozin,et al.  Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks , 2017, ICML.

[26]  Yoshua Bengio,et al.  Denoising Criterion for Variational Auto-Encoding Framework , 2015, AAAI.

[27]  Ferenc Huszár,et al.  Variational Inference using Implicit Distributions , 2017, ArXiv.

[28]  Lucas Theis,et al.  Amortised MAP Inference for Image Super-resolution , 2016, ICLR.

[29]  David Vázquez,et al.  PixelVAE: A Latent Variable Model for Natural Images , 2016, ICLR.

[30]  Pieter Abbeel,et al.  Variational Lossy Autoencoder , 2016, ICLR.

[31]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[32]  Hyunsoo Kim,et al.  Learning to Discover Cross-Domain Relations with Generative Adversarial Networks , 2017, ICML.

[33]  Meng Zhang,et al.  Adversarial Training for Unsupervised Bilingual Lexicon Induction , 2017, ACL.

[34]  Alex Graves,et al.  Video Pixel Networks , 2016, ICML.

[35]  Timo Aila,et al.  Temporal Ensembling for Semi-Supervised Learning , 2016, ICLR.

[36]  Dustin Tran,et al.  Deep and Hierarchical Implicit Models , 2017, ArXiv.

[37]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[38]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.