Fractional Discrete Processes: Compound and Mixed Poisson Representations

We consider two fractional versions of a family of nonnegative integer valued processes. We prove that their probability mass functions solve fractional Kolmogorov forward equations, and we show the overdispersion of these processes. As particular examples in this family, we can define fractional versions of some processes in the literature as the Polya-Aeppli, the Poisson Inverse Gaussian and the Negative Binomial. We also define and study some more general fractional versions with two fractional parameters.

[1]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[2]  Francesco Mainardi,et al.  Renewal processes of Mittag-Leffler and Wright type , 2005 .

[3]  Luisa Beghin,et al.  Poisson-type processes governed by fractional and higher-order recursive differential equations , 2009, 0910.5855.

[4]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[5]  Luisa Beghin,et al.  Fractional diffusion equations and processes with randomly varying time. , 2011, 1102.4729.

[6]  Ken-iti Sato Subordination and self-decomposability , 2001 .

[7]  Fractional normal inverse Gaussian diffusion , 2011 .

[8]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[9]  R. Gorenflo,et al.  A fractional generalization of the Poisson processes , 2007, math/0701454.

[10]  E. Scalas A class of CTRWs: Compound fractional Poisson processes , 2011, 1103.0647.

[11]  Weian Zheng,et al.  Brownian-Time Processes: The PDE Connection and the Half-Derivative Generator , 2001, 1005.3801.

[12]  W. Linde,et al.  Evaluating the small deviation probabilities for subordinated Lévy processes , 2004 .

[13]  I. Podlubny Fractional differential equations , 1998 .

[14]  Ear,et al.  The Fractional Poisson Process and the Inverse Stable Subordinator , 2011 .

[15]  L. Beghin Fractional Relaxation Equations and Brownian Crossing Probabilities of a Random Boundary , 2011, Advances in Applied Probability.

[16]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[17]  Federico Polito,et al.  The space-fractional Poisson process , 2011, 1107.2874.

[18]  Erkan Nane,et al.  Time-changed Poisson processes , 2011, 1105.0657.

[19]  Leda D. Minkova,et al.  The Pólya-Aeppli process and ruin problems , 2004 .

[20]  R. Wolpert Lévy Processes , 2000 .

[21]  Hilfer,et al.  Fractional master equations and fractal time random walks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  M. Meerschaert,et al.  Fractional Laplace motion , 2006, Advances in Applied Probability.

[23]  T. Kozubowski,et al.  Distributional properties of the negative binomial Lévy process , 2009 .

[24]  Palaniappan Vellaisamy,et al.  Fractional Normal Inverse Gaussian Process , 2009, 0907.3637.

[25]  Series Distribution and the First Type Stirling Distribution." , .

[26]  C. Macci,et al.  Alternative Forms of Compound Fractional Poisson Processes , 2012 .

[27]  C. Heyde,et al.  Student processes , 2005, Advances in Applied Probability.

[28]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[29]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[30]  Stuart A. Klugman,et al.  Loss Models: From Data to Decisions , 1998 .

[31]  L. Beghin,et al.  Fractional Poisson processes and related planar random motions , 2009 .

[32]  F. Polito,et al.  Fractional pure birth processes , 2010, 1008.2145.