Nutrients and fungal identity affect the outcome of symbiotic germination in Bipinnula fimbriata (Orchidaceae)

[1]  M. Selosse,et al.  Soil P reduces mycorrhizal colonization while favors fungal pathogens: observational and experimental evidence in Bipinnula (Orchidaceae). , 2020, FEMS microbiology ecology.

[2]  M. Girlanda,et al.  The Dark Side of Orchid Symbiosis: Can Tulasnella calospora Decompose Host Tissues? , 2020, International journal of molecular sciences.

[3]  J. Jersáková,et al.  Altered rhizoctonia assemblages in grasslands on ex-arable land support germination of mycorrhizal generalist, not specialist orchids. , 2020, The New phytologist.

[4]  V. Sarasan,et al.  Diversity of root-associated culturable fungi of Cephalanthera rubra (Orchidaceae) in relation to soil characteristics , 2020, PeerJ.

[5]  S. Vicca,et al.  Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake , 2019, Functional Ecology.

[6]  D. Bourne,et al.  Nutrient Availability and Metabolism Affect the Stability of Coral-Symbiodiniaceae Symbioses. , 2019, Trends in microbiology.

[7]  M. Weiser,et al.  Orchid seed sensitivity to nitrate reflects habitat preferences and soil nitrate content. , 2019, Plant biology.

[8]  D. Whigham,et al.  Mycorrhizal fungi affect orchid distribution and population dynamics. , 2018, The New phytologist.

[9]  N. Reiter,et al.  Matching symbiotic associations of an endangered orchid to habitat to improve conservation outcomes , 2018, Annals of botany.

[10]  Benjamin L Turner,et al.  Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest , 2017 .

[11]  Kevin W. Eliceiri,et al.  ImageJ2: ImageJ for the next generation of scientific image data , 2017, BMC Bioinformatics.

[12]  E. Lindquist,et al.  Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. , 2017, The New phytologist.

[13]  Y. Bashan,et al.  Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile , 2017, Mycorrhiza.

[14]  P. Morrison,et al.  Differences in carbon source utilisation by orchid mycorrhizal fungi from common and endangered species of Caladenia (Orchidaceae) , 2017, Mycorrhiza.

[15]  J. Armesto,et al.  Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile. , 2016, Annals of botany.

[16]  G. Gebauer,et al.  Partial mycoheterotrophy is more widespread among orchids than previously assumed. , 2016, The New phytologist.

[17]  Andrew A Shantz,et al.  Nutrient loading alters the performance of key nutrient exchange mutualisms. , 2016, Ecology letters.

[18]  K. Dixon,et al.  Germination and seedling establishment in orchids: a complex of requirements. , 2015, Annals of botany.

[19]  H. Rasmussen,et al.  Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae , 2014 .

[20]  D. Burkepile,et al.  Context-dependent effects of nutrient loading on the coral-algal mutualism. , 2014, Ecology.

[21]  C. Murat,et al.  Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship , 2014, Planta.

[22]  H. Yurimoto,et al.  Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. , 2014, The New phytologist.

[23]  J. Bronstein,et al.  Understanding evolution and the complexity of species interactions using orchids as a model system. , 2014, The New phytologist.

[24]  W. Barthlott,et al.  Orchid seed diversity : a scanning electron microscopy survey , 2014 .

[25]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[26]  Richard P. Shefferson,et al.  Geography and soil chemistry drive the distribution of fungal associations in lady's slipper orchid, Cypripedium acaule , 2013 .

[27]  PonertJan,et al.  Asymbiotic germination of mature seeds and protocorm development of Pseudorchis albida (Orchidaceae) are inhibited by nitrates even at extremely low concentrations , 2013 .

[28]  H. Lambers,et al.  Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. , 2013, Annals of botany.

[29]  Lin Mao,et al.  Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. , 2012, The New phytologist.

[30]  G. Salazar,et al.  Phylogenetic analysis of Chloraeinae (Orchidaceae) based on plastid and nuclear DNA sequences , 2012 .

[31]  John P O'Neill,et al.  Limitations on orchid recruitment: not a simple picture , 2012, Molecular ecology.

[32]  L. Gentry,et al.  Direct and interactive effects of light and nutrients on the legume-rhizobia mutualism , 2012 .

[33]  J. Dearnaley,et al.  12 Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects , 2012 .

[34]  J. J. Higgins,et al.  The aligned rank transform for nonparametric factorial analyses using only anova procedures , 2011, CHI.

[35]  M. Cisternas,et al.  Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.) Johnst (Orchidaceae) , 2010 .

[36]  Jason D. Hoeksema,et al.  A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. , 2010, Ecology letters.

[37]  G. Gebauer,et al.  15 N and 13 C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi , 2010 .

[38]  D. Read,et al.  Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. , 2008, The New phytologist.

[39]  R. Steneck,et al.  Coral reef management and conservation in light of rapidly evolving ecological paradigms. , 2008, Trends in ecology & evolution.

[40]  K. Heath,et al.  Context dependence in the coevolution of plant and rhizobial mutualists , 2007, Proceedings of the Royal Society B: Biological Sciences.

[41]  D. Read,et al.  Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. , 2007, Annals of botany.

[42]  K. Peay,et al.  Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata , 2007, Plant and Soil.

[43]  J. Bronstein,et al.  The evolution of plant-insect mutualisms. , 2006, The New phytologist.

[44]  E. Simms,et al.  Pathways to mutualism breakdown. , 2006, Trends in ecology & evolution.

[45]  D. Read,et al.  Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. , 2006, The New phytologist.

[46]  Daniel B. Sloan,et al.  Orchid-fungus fidelity: a marriage meant to last? , 2006, Ecology.

[47]  P. Mcgee,et al.  Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests , 2006, Mycorrhiza.

[48]  D. Berveiller,et al.  Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. , 2005, The New phytologist.

[49]  K. Treseder A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. , 2004, The New phytologist.

[50]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[51]  H. Rasmussen Recent developments in the study of orchid mycorrhiza , 2002, Plant and Soil.

[52]  D. Rowland,et al.  Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands , 2003 .

[53]  K. Treseder,et al.  Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. , 2002, The New phytologist.

[54]  Jason D. Hoeksema,et al.  Pursuing the big questions about interspecific mutualism: a review of theoretical approaches , 2000, Oecologia.

[55]  A. Ghani,et al.  Tansley Review No. 110.: Numerical and physical properties of orchid seeds and their biological implications. , 2000, The New phytologist.

[56]  J. Andel,et al.  Nutrient responses as a key factor to the ecology of orchid species , 1997 .

[57]  J. Graham,et al.  Functioning of mycorrhizal associations along the mutualism–parasitism continuum* , 1997 .

[58]  S. Smith,et al.  Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses , 1995 .

[59]  J. Leake The biology of myco-heterotrophic ('saprophytic') plants. , 1994, The New phytologist.

[60]  F. Penningsfeld,et al.  The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. , 1991 .

[61]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[62]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[63]  G. Hadley,et al.  NUTRITIONAL REQUIREMENTS OF ORCHID ENDOPHYTES , 1978 .

[64]  Sally E. Smith,et al.  CARBOHYDRATE TRANSLOCATION IN ORCHID MYCORRHIZAS , 1967 .