Towards hardware implementation of loop subdivision

We present a novel algorithm to evaluate and render Loop subdivision surfaces. The algorithm exploits the fact that Loop subdivision surfaces are piecewise polynomial and uses the forward difference technique for efficiently computing uniform samples on the limit surface. The main advantage of our algorithm is that it only requires a small and constant amount of memory that does not depend on the subdivision depth. The simple structure of the algorithm enables a scalable degree of hardware implementation. By low-level parallelization of the computations, we can reduce the critical computations costs to a theoretical minimum of about one float [3]-operation per triangle.

[1]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[2]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[3]  Michael Shantz,et al.  Rendering cubic curves and surfaces with integer adaptive forward differencing , 1989, SIGGRAPH.

[4]  Ahmad H. Nasri,et al.  Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.

[5]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[6]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[7]  Heinrich Müller,et al.  Efficient Calculation of Subdivision Surfaces for Visualization , 1997, VisMath.

[8]  Kari Pulli,et al.  Fast rendering of subdivision surfaces , 1996, SIGGRAPH '96.

[9]  Sven Havemann,et al.  Subdivision Surface Tesselation on the Fly using a versatile Mesh Data Structure , 2000, Comput. Graph. Forum.

[10]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[11]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[12]  Vaughan R. Pratt,et al.  Adaptive forward differencing for rendering curves and surfaces , 1987, SIGGRAPH.

[13]  D. Zorin Ck Continuity of Subdivision Surfaces , 1996 .

[14]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[15]  M. Carter Computer graphics: Principles and practice , 1997 .

[16]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[17]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[18]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .