Multi-scale blind motion deblurring using local minimum

Blind deconvolution, a chronic inverse problem, is the recovery of the latent sharp image from a blurred one when the blur kernel is unknown. Recent algorithms based on the MAP approach encounter failures since the global minimum of the negative MAP scores really favors the blurry image. The goal of this paper is to demonstrate that the sharp image can be obtained from the local minimum by using the MAP approach. We first propose a cross-scale constraint to make the sharp image correspond to a good local minimum. Then the cross-scale initialization, iterative likelihood update and the iterative residual deconvolution are adopted to trap the MAP approach in the desired local minimum. These techniques result in our cross-scale blind deconvolution approach which constrains the solution from coarse to fine. We test our approach on the standard dataset and many other challenging images. The experimental results suggest that our approach outperforms all existing alternatives.

[1]  Josiane Zerubia,et al.  Estimation of blur and noise parameters in remote sensing , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  James N Caron,et al.  Noniterative blind data restoration by use of an extracted filter function. , 2002, Applied optics.

[3]  Josiane Zerubia,et al.  Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution , 2006, Microscopy research and technique.

[4]  Wei Xiong,et al.  Rotational Motion Deblurring of a Rigid Object from a Single Image , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[5]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[7]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[9]  Aggelos K. Katsaggelos,et al.  Maximum likelihood blur identification and image restoration using the EM algorithm , 1991, IEEE Trans. Signal Process..

[10]  S. Serra-Capizzano,et al.  Improved image deblurring with anti-reflective boundary conditions and re-blurring , 2006 .

[11]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[12]  J. C. Dainty,et al.  Iterative blind deconvolution method and its applications , 1988 .

[13]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[14]  Jian-Feng Cai,et al.  Blind motion deblurring from a single image using sparse approximation , 2009, CVPR.

[15]  Jian Sun,et al.  Progressive inter-scale and intra-scale non-blind image deconvolution , 2008, SIGGRAPH 2008.

[16]  Stephen P. Boyd,et al.  An Efficient Method for Compressed Sensing , 2007, 2007 IEEE International Conference on Image Processing.

[17]  Nikolas P. Galatsanos,et al.  A variational approach for Bayesian blind image deconvolution , 2004, IEEE Transactions on Signal Processing.

[18]  Yehoshua Y. Zeevi,et al.  Quasi Maximum Likelihood Blind Deconvolution of Images Using Optimal Sparse Representations , 2003 .

[19]  É. Thiébaut,et al.  Strict a priori constraints for maximum-likelihood blind deconvolution , 1995 .

[20]  Jiaya Jia,et al.  Single Image Motion Deblurring Using Transparency , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  David J. C. MacKay,et al.  Ensemble Learning for Blind Image Separation and Deconvolution , 2000 .

[22]  Marco Donatelli,et al.  Anti-reflective boundary conditions and re-blurring , 2005 .

[23]  William T. Freeman,et al.  What makes a good model of natural images? , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Serena Morigi,et al.  Cascadic Multiresolution Methods for Image Deblurring , 2008, SIAM J. Imaging Sci..

[25]  Long Quan,et al.  Image deblurring with blurred/noisy image pairs , 2007, SIGGRAPH 2007.

[26]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, SIGGRAPH 2008.

[27]  Anat Levin,et al.  Blind Motion Deblurring Using Image Statistics , 2006, NIPS.

[28]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[29]  Aggelos K. Katsaggelos,et al.  A Bayesian approach to blind deconvolution based on Dirichlet distributions , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[30]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[31]  Tony F. Chan,et al.  Theory and computation of variational image deblurring , 2005 .

[32]  Richard G. Baraniuk,et al.  ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , 2004, IEEE Transactions on Signal Processing.

[33]  Daniela Calvetti,et al.  Statistical elimination of boundary artefacts in image deblurring , 2005 .

[34]  M. Girolami,et al.  Advances in Independent Component Analysis , 2000, Perspectives in Neural Computing.

[35]  Richard Szeliski,et al.  Automatic Estimation and Removal of Noise from a Single Image , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.