Analysis of a finite volume method for a cross-diffusion model in population dynamics
暂无分享,去创建一个
Ricardo Ruiz-Baier | Mostafa Bendahmane | Boris Andreianov | R. Ruiz-Baier | B. Andreianov | M. Bendahmane
[1] Mostafa Bendahmane,et al. Weak and classical solutions to predator―prey system with cross-diffusion , 2010 .
[2] Thierry Gallouët,et al. APPROXIMATION BY THE FINITE VOLUME METHOD OF AN ELLIPTIC-PARABOLIC EQUATION ARISING IN ENVIRONMENTAL STUDIES , 2001 .
[3] Fiorella Sgallari,et al. Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution , 2003, Numerische Mathematik.
[4] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[5] Gonzalo Galiano,et al. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model , 2003, Numerische Mathematik.
[6] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[7] Mostafa Bendahmane,et al. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis , 2008, Networks Heterog. Media.
[8] Frederic Bartumeus,et al. MUTUAL INTERFERENCE BETWEEN PREDATORS CAN GIVE RISE TO TURING SPATIAL PATTERNS , 2002 .
[9] Shoji Yotsutani. On a Limiting System in the Lotka-Volterra Competition with Cross-Diffusion (Nonlinear Diffusive Systems and Related Topics) , 2002 .
[10] C. Pao. Strongly coupled elliptic systems and applications to Lotka–Volterra models with cross-diffusion , 2005 .
[11] Pascal Omnes,et al. A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .
[12] Gonzalo Galiano,et al. Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics , 2001 .
[13] Michael Gutnic,et al. Convergence of Finite Volume Approximations for a Nonlinear Elliptic-Parabolic Problem: A "Continuous" Approach , 2004, SIAM J. Numer. Anal..
[14] Shengmao Fu,et al. Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics , 2009 .
[15] Francois Hermeline,et al. A finite volume method for approximating 3D diffusion operators on general meshes , 2009, J. Comput. Phys..
[16] Enrique Peacock-López,et al. Cross-diffusion in the Templator model of chemical self-replication , 2007 .
[17] Yves Coudière,et al. Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations , 2001 .
[18] B. M. Fulk. MATH , 1992 .
[19] A. Ōkubo,et al. On the spatial spread of the grey squirrel in Britain , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.
[20] M. C. Lombardo,et al. A velocity--diffusion method for a Lotka--Volterra system with nonlinear cross and self-diffusion , 2009 .
[21] R. Eymard,et al. Finite volume approximation of elliptic problems and convergence of an approximate gradient , 2001 .
[22] Thierry Gallouët,et al. Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.
[23] S. Kovács,et al. Turing bifurcation in a system with cross diffusion , 2004 .
[24] Annegret Glitzky,et al. Discrete Sobolev-Poincaré Inequalities for Voronoi Finite Volume Approximations , 2010, SIAM J. Numer. Anal..
[25] Hiroshi Matano,et al. Pattern Formation in Competition-Diffusion Systems in Nonconvex Domains , 1983 .
[26] Jérôme Droniou,et al. Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions , 2008 .
[27] John W. Barrett,et al. Finite element approximation of a nonlinear cross-diffusion population model , 2004, Numerische Mathematik.
[28] S. N. Kruzhkov,et al. Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications , 1969 .
[29] Lee A. Segel,et al. PATTERN GENERATION IN SPACE AND ASPECT. , 1985 .
[30] Mostafa Bendahmane,et al. Conservative cross diffusions and pattern formation through relaxation , 2009 .
[31] Canrong Tian,et al. Instability induced by cross-diffusion in reaction–diffusion systems , 2010 .
[32] Francis Filbet,et al. A finite volume scheme for the Patlak–Keller–Segel chemotaxis model , 2006, Numerische Mathematik.
[33] Ansgar Jüngel,et al. Analysis of a parabolic cross-diffusion population model without self-diffusion , 2006 .
[34] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[35] Masayasu Mimura,et al. Spatial segregation in competitive interaction-diffusion equations , 1980 .
[36] Masayasu Mimura,et al. Exact solutions of a competition-diffusion system , 2000 .
[37] Ansgar Jüngel,et al. Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion , 2004, SIAM J. Math. Anal..
[38] N. Shigesada,et al. Spatial segregation of interacting species. , 1979, Journal of theoretical biology.
[39] B. Amaziane,et al. Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media , 2002 .
[40] M. Sepúlveda,et al. A NUMERICAL ANALYSIS OF A REACTION–DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS , 2010 .
[41] Dirk Horstmann,et al. Remarks on some Lotka–Volterra type cross-diffusion models , 2007 .
[42] Roman Cherniha,et al. New exact solutions of a nonlinear cross-diffusion system , 2008 .
[43] H. A. Abdusalam,et al. Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system , 2003 .
[44] N. Shigesada,et al. Biological Invasions: Theory and Practice , 1997 .
[45] 昌二 四ッ谷. On a Limiting System in the Lotka-Volterra Competition with Cross-Diffusion (非線形拡散系とその周辺 研究集会報告集) , 2002 .
[46] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[47] K. Karlsen,et al. Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.
[48] Yves Coudi,et al. DISCRETE SOBOLEV INEQUALITIES AND L p ERROR ESTIMATES FOR FINITE VOLUME SOLUTIONS OF CONVECTION DIFFUSION EQUATIONS , 2001 .