Analysis of a finite volume method for a cross-diffusion model in population dynamics

The main goal of this work is to propose a convergent finite volume method for a reaction-diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to S.N.~Kruzhkov. The proofs of these results are given in the Appendix.

[1]  Mostafa Bendahmane,et al.  Weak and classical solutions to predator―prey system with cross-diffusion , 2010 .

[2]  Thierry Gallouët,et al.  APPROXIMATION BY THE FINITE VOLUME METHOD OF AN ELLIPTIC-PARABOLIC EQUATION ARISING IN ENVIRONMENTAL STUDIES , 2001 .

[3]  Fiorella Sgallari,et al.  Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution , 2003, Numerische Mathematik.

[4]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[5]  Gonzalo Galiano,et al.  Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model , 2003, Numerische Mathematik.

[6]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[7]  Mostafa Bendahmane,et al.  Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis , 2008, Networks Heterog. Media.

[8]  Frederic Bartumeus,et al.  MUTUAL INTERFERENCE BETWEEN PREDATORS CAN GIVE RISE TO TURING SPATIAL PATTERNS , 2002 .

[9]  Shoji Yotsutani On a Limiting System in the Lotka-Volterra Competition with Cross-Diffusion (Nonlinear Diffusive Systems and Related Topics) , 2002 .

[10]  C. Pao Strongly coupled elliptic systems and applications to Lotka–Volterra models with cross-diffusion , 2005 .

[11]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[12]  Gonzalo Galiano,et al.  Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics , 2001 .

[13]  Michael Gutnic,et al.  Convergence of Finite Volume Approximations for a Nonlinear Elliptic-Parabolic Problem: A "Continuous" Approach , 2004, SIAM J. Numer. Anal..

[14]  Shengmao Fu,et al.  Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics , 2009 .

[15]  Francois Hermeline,et al.  A finite volume method for approximating 3D diffusion operators on general meshes , 2009, J. Comput. Phys..

[16]  Enrique Peacock-López,et al.  Cross-diffusion in the Templator model of chemical self-replication , 2007 .

[17]  Yves Coudière,et al.  Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations , 2001 .

[18]  B. M. Fulk MATH , 1992 .

[19]  A. Ōkubo,et al.  On the spatial spread of the grey squirrel in Britain , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[20]  M. C. Lombardo,et al.  A velocity--diffusion method for a Lotka--Volterra system with nonlinear cross and self-diffusion , 2009 .

[21]  R. Eymard,et al.  Finite volume approximation of elliptic problems and convergence of an approximate gradient , 2001 .

[22]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[23]  S. Kovács,et al.  Turing bifurcation in a system with cross diffusion , 2004 .

[24]  Annegret Glitzky,et al.  Discrete Sobolev-Poincaré Inequalities for Voronoi Finite Volume Approximations , 2010, SIAM J. Numer. Anal..

[25]  Hiroshi Matano,et al.  Pattern Formation in Competition-Diffusion Systems in Nonconvex Domains , 1983 .

[26]  Jérôme Droniou,et al.  Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions , 2008 .

[27]  John W. Barrett,et al.  Finite element approximation of a nonlinear cross-diffusion population model , 2004, Numerische Mathematik.

[28]  S. N. Kruzhkov,et al.  Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications , 1969 .

[29]  Lee A. Segel,et al.  PATTERN GENERATION IN SPACE AND ASPECT. , 1985 .

[30]  Mostafa Bendahmane,et al.  Conservative cross diffusions and pattern formation through relaxation , 2009 .

[31]  Canrong Tian,et al.  Instability induced by cross-diffusion in reaction–diffusion systems , 2010 .

[32]  Francis Filbet,et al.  A finite volume scheme for the Patlak–Keller–Segel chemotaxis model , 2006, Numerische Mathematik.

[33]  Ansgar Jüngel,et al.  Analysis of a parabolic cross-diffusion population model without self-diffusion , 2006 .

[34]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[35]  Masayasu Mimura,et al.  Spatial segregation in competitive interaction-diffusion equations , 1980 .

[36]  Masayasu Mimura,et al.  Exact solutions of a competition-diffusion system , 2000 .

[37]  Ansgar Jüngel,et al.  Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion , 2004, SIAM J. Math. Anal..

[38]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[39]  B. Amaziane,et al.  Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media , 2002 .

[40]  M. Sepúlveda,et al.  A NUMERICAL ANALYSIS OF A REACTION–DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS , 2010 .

[41]  Dirk Horstmann,et al.  Remarks on some Lotka–Volterra type cross-diffusion models , 2007 .

[42]  Roman Cherniha,et al.  New exact solutions of a nonlinear cross-diffusion system , 2008 .

[43]  H. A. Abdusalam,et al.  Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system , 2003 .

[44]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[45]  昌二 四ッ谷 On a Limiting System in the Lotka-Volterra Competition with Cross-Diffusion (非線形拡散系とその周辺 研究集会報告集) , 2002 .

[46]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[47]  K. Karlsen,et al.  Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.

[48]  Yves Coudi,et al.  DISCRETE SOBOLEV INEQUALITIES AND L p ERROR ESTIMATES FOR FINITE VOLUME SOLUTIONS OF CONVECTION DIFFUSION EQUATIONS , 2001 .