Simple invariant solutions embedded in 2D Kolmogorov turbulence

We consider long simulations of 2D Kolmogorov turbulence body-forced by $\sin4y \ex$ on the torus $(x,y) \in [0,2\pi]^2$ with the purpose of extracting simple invariant sets or `exact recurrent flows' embedded in this turbulence. Each recurrent flow represents a sustained closed cycle of dynamical processes which underpins the turbulence. These are used to reconstruct the turbulence statistics in the spirit of Periodic Orbit Theory derived for certain types of low dimensional chaos. The approach is found to be reasonably successful at a low value of the forcing where the flow is close to but not fully in its asymptotic (strongly) turbulent regime. Here, a total of 50 recurrent flows are found with the majority buried in the part of phase space most populated by the turbulence giving rise to a good reproduction of the energy and dissipation probability density functions. However, at higher forcing amplitudes now in the asymptotic turbulent regime, the generated turbulence data set proves insufficiently long to yield enough recurrent flows to make viable predictions. Despite this, the general approach seems promising providing enough simulation data is available since it is open to extensive automation and naturally generates dynamically important exact solutions for the flow.

[1]  H. Jeanmart,et al.  Box-size dependence and breaking of translational invariance in the velocity statistics computed from three-dimensional turbulent Kolmogorov flows , 2007 .

[2]  H. Greenside,et al.  Spatially localized unstable periodic orbits of a high-dimensional chaotic system , 1998 .

[3]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[4]  Clarence W. Rowley,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry: Coherent structures , 2012 .

[5]  Z. She,et al.  Large-scale dynamics and transition to turbulence in the two-dimensional Kolmogorov flow , 1988 .

[6]  A. Obukhov Kolmogorov flow and laboratory simulation of it , 1983 .

[7]  R. Kerswell,et al.  Recent progress in understanding the transition to turbulence in a pipe , 2005 .

[8]  Peter V. Coveney,et al.  Unstable periodic orbits in weak turbulence , 2010, J. Comput. Sci..

[9]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[10]  Evgueni Kazantsev Sensitivity of the attractor of the barotropic ocean model to external influences: approach by unstable periodic orbits , 2001 .

[11]  Lai-Sang Young,et al.  Ergodic Theory of Chaotic Dynamical Systems , 1993 .

[12]  Genta Kawahara,et al.  Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst , 2001, Journal of Fluid Mechanics.

[13]  J. Gibson,et al.  Visualizing the geometry of state space in plane Couette flow , 2007, Journal of Fluid Mechanics.

[14]  P. Cvitanović Continuous symmetry reduced trace formulas , 2007 .

[15]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[16]  J. Swift,et al.  Instability of the Kolmogorov flow in a soap film. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Carl P. Dettmann,et al.  Stability ordering of cycle expansions , 1997 .

[18]  P. Cvitanović Periodic orbit theory in classical and quantum mechanics. , 1992, Chaos.

[19]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .

[20]  F. Waleffe On a self-sustaining process in shear flows , 1997 .

[21]  S. Musacchio,et al.  Evidence for the double cascade scenario in two-dimensional turbulence. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. Westerweel,et al.  OBSERVATION OF NONLINEAR TRAVELLING WAVES IN TURBULENT PIPE FLOW , 2006 .

[23]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[24]  John Kim,et al.  Regeneration mechanisms of near-wall turbulence structures , 1995, Journal of Fluid Mechanics.

[25]  Jerry Westerweel,et al.  Turbulence transition in pipe flow , 2007 .

[26]  P. Cvitanović,et al.  Geometry of the turbulence in wall-bounded shear flows: periodic orbits , 2010 .

[27]  P. Bartello,et al.  Self-similarity of decaying two-dimensional turbulence , 1996, Journal of Fluid Mechanics.

[28]  Erik Aurell,et al.  Recycling of strange sets: II. Applications , 1990 .

[29]  M. Shōji,et al.  Bifurcation diagrams in Kolmogorov's problem of viscous incompressible fluid on 2-D flat tori , 1991 .

[30]  D. Viswanath Recurrent motions within plane Couette turbulence , 2006, Journal of Fluid Mechanics.

[31]  M. Yamada,et al.  The instability of rhombic cell flows , 1987 .

[32]  Carlo Marchioro,et al.  An example of absence of turbulence for any Reynolds number , 1986 .

[33]  Sun-Chul Kim,et al.  Bifurcations and inviscid limit of rhombic Navier–Stokes flows in tori , 2003 .

[34]  J. Gibson,et al.  Equilibrium and travelling-wave solutions of plane Couette flow , 2008, Journal of Fluid Mechanics.

[35]  Ruslan L. Davidchack,et al.  On the State Space Geometry of the Kuramoto-Sivashinsky Flow in a Periodic Domain , 2007, SIAM J. Appl. Dyn. Syst..

[36]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[37]  Lawrence Sirovich,et al.  An investigation of chaotic Kolmogorov flows , 1990 .

[38]  Lennaert van Veen,et al.  Periodic motion representing isotropic turbulence , 2018, 1804.00547.

[39]  M. Uhlmann,et al.  The Significance of Simple Invariant Solutions in Turbulent Flows , 2011, 1108.0975.

[40]  Michael T. Heath,et al.  Relative Periodic Solutions of the Complex Ginzburg-Landau Equation , 2004, SIAM J. Appl. Dyn. Syst..

[41]  J. Sommeria Experimental study of the two-dimensional inverse energy cascade in a square box , 1986, Journal of Fluid Mechanics.

[42]  Yueheng Lan,et al.  Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  P. Cvitanović,et al.  Spatiotemporal chaos in terms of unstable recurrent patterns , 1996, chao-dyn/9606016.

[44]  F. V. Dolzhanskii,et al.  Laboratory and theoretical models of plane periodic flow , 1979 .

[45]  W. Young,et al.  Energy-enstrophy stability of β-plane Kolmogorov flow with drag , 2008, 0803.0558.

[46]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[47]  Dieter Armbruster,et al.  Symmetries and dynamics for 2-D Navier-Stokes flow , 1996 .

[48]  E. Kazantsev Unstable periodic orbits and attractor of the barotropic ocean model , 1998 .

[49]  D. Viswanath,et al.  The critical layer in pipe flow at high Reynolds number , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Y. Lan Cycle expansions: From maps to turbulence , 2010 .

[51]  Steven A. Orszag,et al.  Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers , 1996, Journal of Fluid Mechanics.

[52]  Peter V Coveney,et al.  New variational principles for locating periodic orbits of differential equations , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  D. Viswanath,et al.  Heteroclinic connections in plane Couette flow , 2008, Journal of Fluid Mechanics.

[54]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[55]  S. Woodruff,et al.  KOLMOGOROV FLOW IN THREE DIMENSIONS , 1996 .

[56]  Ronald L. Panton,et al.  Self-Sustaining Mechanisms of Wall Turbulence , 1997 .

[57]  Y. Duguet,et al.  Relative periodic orbits in transitional pipe flow , 2008, 0807.2580.

[58]  Yueheng Lan,et al.  Variational method for finding periodic orbits in a general flow. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.