Effects of parameter indeterminacy in pelagic biogeochemical modules of Earth System Models on projections into a warming future: The scale of the problem

Numerical Earth System Models are generic tools used to extrapolate present climate conditions into a warming future and to explore geo-engineering options. Most of the current-generation models feature a simple pelagic biogeochemical model component that is embedded into a three dimensional general circulation ocean model. The dynamics of these biogeochemical model components is essentially controlled by so-called model parameters most of which are poorly known. Here we explore the feasibility to estimate these parameters in a full-fledged three dimensional Earth System Model by minimizing the misfit to noisy observations. The focus is on parameter identifiability. Based on earlier studies, we illustrate problems in determining a unique estimate of those parameters, that prescribe the limiting effect of nutrient and light-depleted conditions on carbon assimilation by autotrophic phytoplankton. Our results showcase that for typical models and evaluation metrics no meaningful “best” unique parameter set exists. We find very different parameter sets which are, on the one hand, equally consistent with our (synthetic) historical observations while, on the other hand, they propose strikingly differing projections into a warming climate.

[1]  Slawomir Koziel,et al.  Accelerated parameter identification in a 3D marine biogeochemical model using surrogate-based optimization , 2013 .

[2]  J. Tjiputra,et al.  Assimilation of seasonal chlorophyll and nutrient data into an adjoint three‐dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization , 2007 .

[3]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[4]  Andreas Oschlies,et al.  Towards an assessment of simple global marine biogeochemical models of different complexity , 2010 .

[5]  Peter G. Challenor,et al.  Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT 1.1 alpha) , 2011 .

[6]  Richard J. Matear,et al.  Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P , 1995 .

[7]  Marjorie A. M. Friedrichs A data assimilative marine ecosystem model of the central equatorial Pacific: Numerical twin experiments , 2001 .

[8]  Andreas Oschlies,et al.  Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic Ocean: Part 2) Standing stocks and nitrogen fluxes , 2003 .

[9]  Thomas Slawig,et al.  Parameter optimization and uncertainty analysis in a model of oceanic CO2 uptake using a hybrid algorithm and algorithmic differentiation , 2010 .

[10]  James G. Richman,et al.  Data assimilation and a pelagic ecosystem model: parameterization using time series observations , 1998 .

[11]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[12]  M. Pahlow,et al.  Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice , 2010 .

[13]  G. Almandoz,et al.  Evaluation of SeaWiFS and MODIS chlorophyll‐a products in the Argentinean Patagonian Continental Shelf (38° S–55° S) , 2009 .

[14]  David P. Keller,et al.  Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario , 2014, Nature Communications.

[15]  G. Evans,et al.  The Use of Optimization Techniques to Model Marine Ecosystem Dynamics at the JGOFS Station at 47 degrees N 20 degrees W [and Discussion] , 1995 .

[16]  M. Friedrichs,et al.  The assimilation of satellite‐derived data into a one‐dimensional lower trophic level marine ecosystem model , 2014 .

[17]  N. Nakicenovic,et al.  RCP 8.5—A scenario of comparatively high greenhouse gas emissions , 2011 .

[18]  Andreas Oschlies,et al.  Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business‐as‐usual CO2 emission scenario until year 4000 AD , 2008 .

[19]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[20]  A. Oschlies,et al.  A new marine ecosystem model for the University of Victoria Earth System Climate Model , 2012 .

[21]  H. Dietze,et al.  Effects of increased isopycnal diffusivity mimicking the unresolved equatorial intermediate current system in an earth system climate model , 2013 .

[22]  E. Hofmann,et al.  Time series sampling and data assimilation in a simple marine ecosystem model , 1996 .

[23]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[24]  Dirk Notz,et al.  How well must climate models agree with observations? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Andreas Oschlies,et al.  Can we predict the direction of marine primary production change under global warming? , 2011 .

[26]  Marika M. Holland,et al.  The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates , 2001, Data, Models and Analysis.

[27]  A. Weaver,et al.  Long term climate implications of 2050 emission reduction targets , 2007 .

[28]  Marjorie A. M. Friedrichs,et al.  Using biogeochemical data assimilation to assess the relative skill of multiple ecosystem models in the Mid-Atlantic Bight: effects of increasing the complexity of the planktonic food web , 2014 .

[29]  Ulrike Löptien,et al.  Constraining parameters in marine pelagic ecosystem models – is it actually feasible with typical observations of standing stocks? , 2015 .

[30]  A. Oschlies,et al.  Revisiting ocean carbon sequestration by direct injection: a global carbon budget perspective , 2015 .

[31]  Xianqing Lv,et al.  Data assimilation in a simple marine ecosystem model based on spatial biological parameterizations , 2009 .

[32]  F. D’Ortenzio,et al.  The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates , 2007 .

[33]  Watson W. Gregg,et al.  Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model , 2013 .

[34]  C. Stow,et al.  Skill Assessment for Coupled Biological/Physical Models of Marine Systems. , 2009, Journal of marine systems : journal of the European Association of Marine Sciences and Techniques.

[35]  A. Oschlies,et al.  Sensitivity of ecosystem parameters to simulated satellite ocean color data using a coupled physical-biological model of the North Atlantic , 1999 .

[36]  P. Irvine,et al.  Towards Integrated Ethical and Scientific Analysis of Geoengineering: A Research Agenda , 2012 .

[37]  Jens Schröter,et al.  Testing a marine ecosystem model: Sensitivity analysis and parameter optimization , 2001 .

[38]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[39]  Thomas R. Anderson,et al.  Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models , 2010 .

[40]  Anand Srivastav,et al.  Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0) , 2016 .

[41]  Ken Caldeira,et al.  Sensitivity of ocean acidification to geoengineered climate stabilization , 2009 .

[42]  H. Dietze,et al.  Constraining parameters in state-of-the-art marine pelagic ecosystem models – is it actually feasible with typical observations of standing stocks? , 2015 .

[43]  A. Oschlies,et al.  Simulated effects of southern hemispheric wind changes on the Pacific oxygen minimum zone , 2016 .

[44]  Andreas Oschlies,et al.  Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method , 2001 .

[45]  Andreas Oschlies,et al.  Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part I— Method and parameter estimates , 2003 .

[46]  Ken Caldeira,et al.  Geoengineering Earth's radiation balance to mitigate CO2‐induced climate change , 2000 .

[47]  Ulrike Löptien,et al.  Steady states and sensitivities of commonly used pelagic ecosystem model components , 2011 .

[48]  P. Cox,et al.  Uncertainty in climate’carbon-cycle projections associated with the sensitivity of soil respiration to temperature , 2003 .

[49]  Timothy M. Lenton,et al.  A review of climate geoengineering proposals , 2011 .

[50]  G. Evans,et al.  Defining misfit between biogeochemical models and data sets , 2003 .

[51]  Marjorie A. M. Friedrichs,et al.  Ecosystem model complexity versus physical forcing: Quantification of their relative impact with assimilated Arabian Sea data , 2006 .