Use of ridgelets, curvelets application for face recognition: Case study: Smart identity card

This paper presents a brief description of ridglet transform, curvelet transform: the first and second generation, we detail the various areas where these transforms have proven their qualities and their contributions compared to the previous transformed. As case study of these transforms, smart identity cart application using smart watermarking techniques is proposed.

[1]  Fionn Murtagh,et al.  Gray and color image contrast enhancement by the curvelet transform , 2003, IEEE Trans. Image Process..

[2]  Myeong-Ryong Nam,et al.  Fusion of multispectral and panchromatic Satellite images using the curvelet transform , 2005, IEEE Geoscience and Remote Sensing Letters.

[3]  E. Candès Ridgelets: estimating with ridge functions , 2003 .

[4]  G. Y. Chen,et al.  Complex Ridgelets for Image Denoising , .

[5]  E. Candès New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .

[6]  David L. Donoho,et al.  Digital curvelet transform: strategy, implementation, and experiments , 2000, SPIE Defense + Commercial Sensing.

[7]  Mohamed-Jalal Fadili,et al.  Morphological Component Analysis: An Adaptive Thresholding Strategy , 2007, IEEE Transactions on Image Processing.

[8]  François-Xavier Le Dimet,et al.  Curvelet-Based Snake for Multiscale Detection and Tracking of Geophysical Fluids , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[10]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[11]  E. Candès,et al.  Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.

[12]  Emmanuel J. Candès,et al.  Curvelets and Curvilinear Integrals , 2001, J. Approx. Theory.

[13]  Gerlind Plonka-Hoch,et al.  Nonlinear Regularized Reaction-Diffusion Filters for Denoising of Images With Textures , 2008, IEEE Transactions on Image Processing.

[14]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[15]  Gerlind Plonka-Hoch,et al.  Combined Curvelet Shrinkage and Nonlinear Anisotropic Diffusion , 2007, IEEE Transactions on Image Processing.

[16]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[17]  Petros Koumoutsakos,et al.  Edge detection in microscopy images using curvelets , 2009, BMC Bioinformatics.

[18]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[19]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[20]  Balázs Kégl,et al.  Image denoising with complex ridgelets , 2007, Pattern Recognit..

[21]  Aleksandra Pizurica,et al.  Context adaptive image denoising through modeling of curvelet domain statistics , 2008, J. Electronic Imaging.

[22]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..